CS21003 Algorithms — I, Autumn 2012-13

Class test 2

Maximum marks: 20 Time: 15-Nov-2012 Durationhour

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precisevéyral questions,

1. Let S = agaras...ap—1 andT = bybibs ... by 1 be two strings of lengtha andm, respectively. The
Levenshtein distance (or edit distance) L(S,T") betweenS andT is the minimum number of elementary
edit operations needed to conv8rto T'. Three types of elementary edit operations are permitted: insertion
of a character (likelgorithm = alogorithm), deletion of a charactenl{ogorithm = logorithm), and
replacing one character by another characterof-ithm = logarithm).

For computingL(S, T'), build a two-dimensional tablé[:, j| for -1 < i <n—1land—1 < j < m — 1.
The entryL[i, j] stands for the Levenshtein distance between the prefiikes . ;] andT’[0. .. j]. Write a

©(nm)-time algorithm to populate the entire taldlen a suitable sequence. The enfrjp — 1, m — 1] gives
the desired distanck(S,T'). (Hint: ExpressL]i, j] interms ofL[: — 1, 4], L[i,j — 1] andL[i — 1,j — 1].) (10)

Solution The boundary conditions at&li, —1] = i + 1 for all i > —1 (we need to makeé + 1 deletions inS[0. .. 1]),

andL[-1,j] =j+ 1forallj > —1(j + linsertionsinS[0... — 1] = ¢). Fori,j > 0, we have
Lli—1,5]+1, {Convertaoal ...a;—1a; 10 bgby ... bja,, and deletezi.}
Lli,j—1]+1, {Convertaoal ...a; toboby ...bj_1, and appendj.}
L[i,] = min [If a; = b;, convertingaga ... a;—1a; 0 boby .. .b;_1b; is the same

as convertingia, . .. a;—1 t0boby ... b;_1, sot = 0 in this case.
Lli—1,j—1]+t.
If a; # bj, then convertigay . ..a;_1a; t0boby . .. bj,lai,

and replace;; by b;, sot = 1 in this cas%.

To start with, we populate the topmost row and the leftmodtiroa of L. using the boundary conditions.
Subsequently, we populate the rest of the table in the roypem@ar column-major) fashion. This ensures that
when L[i, j] is computed, the valuel|i — 1, j], L[i,j — 1] andL[i — 1, j — 1] are already available.

The pseudocode of an algorithm for computiigs, T') is given below.

Initialize L[i,—1] =i+ 1fori = —1,0,1,2,...,n — 1.
Initialize L[-1,j] =j+ 1forj =0,1,2,...,m — 1.
Fori =0,1,2,...,n — 1, repeaty{
Forj =0,1,2,...,m — 1, repeaty{
If (a; = b;), sett =0, else set = 1.
SetLli, j] = min (L[i 1,441, L~ 1+ 1, Lli— 1,5 — 1] +t).
} *End of for 5 */
} 1* End of for i */
ReturnLin — 1,m — 1].

©CoN O grMONE

— Pagelof2 —

2. Let.S andT be strings as in Exercise 1. We are given a baumdthe number of errors. We want to compute
all positionsi in S, for which S[i. . .7 + k| (for somek > 0) is at a Levenshtein distanee! from 7. This
problem is known agpproximate string matching, and has applications in spell checking, DNA sequence
matching in computational biology, and identifying a multimedia file from a (possitisupted) snapshot.

Explain how you can modify the algorithm of Exercise 1 in order to find all {hgreximate matches (that
is, matches with< [errors) of7" in S. The modified algorithm should run iB(nm) time. (20)

Solution The algorithm of Exercise 1 requires two modifications fdvs the approximate string matching problem.

1. Change in boundary conditions: Since the approximate match éfcan start from any location i, the
characters preceding any matching location do not courthiendistance calculation, so we set the leftmost
column asL[i, —1] = 0 (instead ofi + 1) for all i. The other boundary condition (the topmost row) remains the
same.

2. Remembering the edit sequences: Fori, j > 0, we need to remember which of the three arguments gives the
minimum value during the computation &fi, j]. We need to track back to the beginning of the match using
these markers.

The modified algorithm is given below.

1. Fori=-1,0,1,2,...,n— 1, setL[i,—1] = 0.

2. Forj=0,1,2,...,m—1,setL[-1,j] =j+ 1.

3. Fori=0,1,2,...,n— 1, repeat{

4 Forj =0,1,2,...,m — 1, repeaty{

5. If (a; = b;), sett =0, else set = 1.

6 Letu=L[i — 1,§] 4+ 1,v=L[i,j — 1]+ landw = L[i — 1,5 — 1] + t.
7 SetL[i, j] = min(u, v, w).

8 If (L[i,7] = u), setE[i, j] =1

9. else if(L[i, j] = v), setE][i, j] = «,
10. else set[i, j] =\ .
11. } * End of for j */
12. If (Lli,m —1] <1){
13. Initializes’ = 7 andj’ = m — 1.
14. While(L[i’, j'] # 0), repeaty{ /* Backtracking loop */
15. If(E[i,7]=1), seti’ =4 —1,
16. elseif(E[i, j'] = +), setj’ = j' — 1,
17. elseset =i —1landj’ = j — 1.
18. } I* End of while*/
19. Report the approximate match locatior- ;.
20. } * End of if */

21. } *End offori*/

In this algorithm, the populating of and E takes a total oB(nm) time. Each iteration in the backtracking
loop for each approximate match reducesnd/or;’. If only ¢’ is reduced, then the value @fi’, ;'] also
reduces byl. Therefore, the total number of iterations of each backirecloop ismax(m,). We usually
havel < m — 1 (otherwise, every position if is an approximate match position), so each backtracking loo
runs inO(m) time, and there are at mastexecutions of the backtracking loop.

— Page2of2 —

