
CS21003 Algorithms I, Autumn 2012–13

Class test 1

Maximum marks: 20 Time: 11-Sep-2012 Duration:1 hour

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. The Fibonacci numbersFn, n > 0, are defined asF0 = 0, F1 = 1, andFn = Fn−1 + Fn−2 for n > 2. In
order to computeFn, we initialize each entry of an arrayF [0 . . . n] to−1. Then, we call a recursive function
which, upon inputm, first checks whether the array locationF [m] stores−1. If so, it recursively computes
Fm, and stores this value inF [m]. Otherwise, the function immediately returns.

int Fib (int m, int *F)
{

if (F[m] == -1)
if (m <= 1) F[m] = m; else F[m] = Fib(m-1,F) + Fib(m-2,F);

return F[m];
}

/* Inside main() */

for (i=0; i<=n; ++i) F[i] = -1;

printf("F_%d = %d\n", n, Fib(n,F));

What is the running time of the callFib(n,F) in main()? Justify. (10)

Solution Let us look at what happens in the call stack, and the changes in theF [] array. Fib(n) calls Fib(n-1),
Fib(n-1) callsFib(n-2), . . . , Fib(2) callsFib(1). The callFib(1) setsF [1] = 1, and returns to the call
of Fib(2). Fib(2) then makes the second recursive callFib(0) which setsF0 = 0 and returns again to the
call of Fib(2). After both the recursive calls return,Fib(2) addsF [0] andF [1] (the two return values), saves
this sum inF [2], and returns to the callFib(3). WhenFib(3) makes the second recursive callFib(1), the
value ofF [1] is already computed, so this value is returned without making any more recursive calls. Proceeding
in this way, each callFib(i) makes a second recursive callFib(i-2) which sees the array elementF [i − 2]
already computed, so this value is straightaway returned toFib(i+1).

It follows that the outermost call makes a total of2n further recursive calls ofFib(). Out of these, onlyn calls
set the elements inF [], and the remainingn calls return these values. Finally, the outermost call setsF [n], and
returns tomain(). Therefore, the running time ofFib(n,F) in main() is Θ(n).

— Page 1 of 2 —

2. Ms. Rotunda is making a long train journey. She can stay without food for four hours. The train does not
have a pantry car, so Ms. Rotunda can eat only when the train stops at stations. Given the complete timetable
for the train, design an efficient algorithm to identify the stations where Ms. Rotunda would eat so that she
never feels hungry throughout the journey, and the number of meals is assmall as possible. Assume that
she takes her first meal just before the train leaves its source station. Assume also that the train halts at least
once in any period of four hours (otherwise, there is no solution to Ms. Rotunda’s problem). Neglect the
halting times of the train at stations. Prove the correctness of your algorithm, and deduce its running time.(10)

Solution The algorithm: Let S0, S1, S2, . . . , Sn be the stations where the train stops (in that sequence), whereS0 is the
source, andSn the destination. The timesti (in hours) for the train to go from StationSi−1 to StationSi are
also given fori = 1, 2, . . . , n. Neglecting halting times at stations, the time taken by thetrain to travel from
stationSi toSj (with j > i) is thenti+1+ti+2+ · · ·+tj . The following greedy algorithm solves Ms. Rotunda’s
minimization problem.

Print “Take meal at Station 0”.
Setlastmeal = 0, i = 0, andfasttime = 0.
While (i 6 n) {

Setfasttime = fasttime+ ti+1.
If (fasttime > 4) {

Print “Take meal at Station i”.
Setlastmeal = i andfasttime = 0.

} else{
Incrementi by 1.

}
}

Running time: Under the assumption that eachti 6 4, the loop of the above program runs for at most2n
times. Each iteration of the loop takes constant time. So therunning time of this greedy algorithm isΘ(n).

Correctness:Let 0, i1, i2, . . . , ik be an optimal solution to Ms. Rotunda’s problem, whereas0, j1, j2, . . . , jl be
the solution produced by the greedy algorithm. Clearly,i1 6 j1, so0, j1, i2, i3, . . . , ik continues to remain an
optimal solution. We must havei2 6 j2, so0, j1, j2, i3, i4, . . . , ik is again an optimal solution. Proceeding in
this way, we can convert the optimal solution to the greedy solution without increasing the number of meals.
Thus,k > l. But since0, i1, i2, . . . , ik is an optimal solution, we must havek 6 l. Therefore,k = l, that is, the
greedy solution too is optimal.

— Page 2 of 2 —

