CS21003 Algorithms I, Autumn 2012-13

Class test 1

Maximum marks: 20 Time: 11-Sep-2012 Duratidrhour

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precisevéyral questions,

1. The Fibonacci numberB,, n > 0, are defined ag, = 0, I} = 1, andF,, = F,,_1 + F,_oforn > 2. In
order to computé”,, we initialize each entry of an array[0 . . . n] to —1. Then, we call a recursive function
which, upon inputn, first checks whether the array locatiéimn| stores—1. If so, it recursively computes
F,,, and stores this value ifi[m]. Otherwise, the function immediately returns.

int Fib (int m int *F)

{ if (F[m ==-1)
if (m<=1) F[mM =m else F[mM = Fib(m1,F) + Fib(m2,F);
return F[nl;
}
[+ Inside main() =/
for (i=0; i<=n; ++i) F[i] = -1,

printf("F % = %\n", n, Fib(n,F));
What is the running time of the call b(n, F) in mai n() ? Justify. (10)

Solution Let us look at what happens in the call stack, and the chamg#®eiF[] array. Fi b(n) callsFi b(n-1),
Fi b(n-1) callsFi b(n-2),...,Fib(2) callsFi b(1). The callFi b(1) setsF'[1] = 1, and returns to the call
of Fi b(2). Fi b(2) then makes the second recursive €lb(0) which setsF, = 0 and returns again to the
call of Fi b(2) . After both the recursive calls returi, b(2) addsF[0] andF[1] (the two return values), saves
this sum inF[2], and returns to the calfli b(3) . WhenFi b(3) makes the second recursive dallo(1) , the
value of F'[1] is already computed, so this value is returned without mgaéiity more recursive calls. Proceeding
in this way, each calfi b(i) makes a second recursive dalllb(i - 2) which sees the array elemefifi — 2]
already computed, so this value is straightaway return&d boi +1) .

It follows that the outermost call makes a totabaf further recursive calls dfi b() . Out of these, only. calls
set the elements if'] |, and the remaining calls return these values. Finally, the outermost call Bgt$, and
returns tomai n() . Therefore, the running time & b(n, F) in mai n() is©(n).

— Pagelof2 —

2. Ms. Rotunda is making a long train journey. She can stay without food tortHours. The train does not
have a pantry car, so Ms. Rotunda can eat only when the train stops@ist&iven the complete timetable
for the train, design an efficient algorithm to identify the stations where Mgurirla would eat so that she
never feels hungry throughout the journey, and the number of mealssimasas possible. Assume that
she takes her first meal just before the train leaves its source statialrmAsdso that the train halts at least
once in any period of four hours (otherwise, there is no solution to MturRia’s problem). Neglect the
halting times of the train at stations. Prove the correctness of your algoritithtezluce its running time. (10)

Solution The algorithm: Let Sy, Sy, 5s,.. ., S, be the stations where the train stops (in that sequencejeushés the
source, and,, the destination. The timés (in hours) for the train to go from Statio$,_; to StationS; are
also given fori = 1,2,...,n. Neglecting halting times at stations, the time taken byttaim to travel from
stationS; to S; (with j > 4) is thent; ;1 +t;42+- - - +t;. The following greedy algorithm solves Ms. Rotunda’s
minimization problem.

Print “Take meal at Sation 0”.
Setlastmeal = 0,7 = 0, and fasttime = 0.
While (i < n) {
Set fasttime = fasttime + t; 1.
If (fasttime > 4) {
Print “Take meal at Station i”.
Setlastmeal = i and fasttime = 0.
} else{
Increment by 1.
}

}

Running time: Under the assumption that eath< 4, the loop of the above program runs for at mpst
times. Each iteration of the loop takes constant time. Souheing time of this greedy algorithm &(n).

Correctness:Let0, i1, 1s,.. ., be an optimal solution to Ms. Rotunda’s problem, whefgas, j, .. ., j; be
the solution produced by the greedy algorithm. Cleaily< j1, s00, j1, 42, i3, . . . , i continues to remain an
optimal solution. We must havig < jo, S00, ji1, jo, 43,14, - - - , i IS @gain an optimal solution. Proceeding in
this way, we can convert the optimal solution to the greedytsm without increasing the number of meals.
Thus,k > [. But since0, iy, io, . .., i IS an optimal solution, we must ha¥e< [. Thereforef = [, that is, the
greedy solution too is optimal.

— Page2of2 —

