CS21003 Algorithms I, Autumn 2011-12

Mid-Semester Test

Maximum marks: 30 Date: September 27, 2011 Duration: Two hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precisevérall questions,

1. A treap T is a binary search tree with each node storing (in
addition to a value) a priority. The priority of any node is not
smaller than the priorities of its children. The root is the node with
the highest priority. Unlike heaps, a treap is not forced to satisfy
the heap-structure property. An example of a treap is given in the
adjacent figure, where the péit, y) stored in a node indicates that
z is the value of the node, angdis the priority of the node. The
values satisfy binary-search-tree ordering, andjithkialues satisfy
heap ordering.

(@) Design anO(h(T'))-time algorithm to insert a value with priority y in a treap. Hint: Use rotations.)(6)

Solution First, insertx in the tree using the standard BST-insertion procedures ifisertion may violate heap ordering,
that is, we may encounter a situation where a nodes a priority larger than the priority of its paregnt
Depending upon whetheris the left or the right child op, we make a right or left rotation makingthe parent
of p. Such a situation is demonstrated in the figure below. Thgetguriority value moves by one level up the
tree, and may again be larger than the priority of its new mar&his violation of heap ordering is repaired
by another rotation. This process is repeated until heaprimgl is restored, or the node with a large priority
reaches the root of the treap.

— Page10of4 —

Roll no: Name:

(b) Demonstrate how your algorithm inserts the val@ewith priority 23 in the treap of Page 1. Show
clearly all the major steps of the algorithm (instead of drawing only the fisaillte (6)

Solution

(c) Another rotation necessary

(d) Heap ordering restored

— Page 2 0f4 —

Roll no: Name:

2. Prove or disprove: For all integefs> 0, any AVL tree of heighth 4+ 1 contains strictly more nodes than
any AVL tree of heighth. (6)

Solution False: A Fibonacci tree of height four consists of oy, 3 — 1 = F; — 1 = 13 — 1 = 12 nodes, whereas a
full binary tree of height three contaiist+ 2 + 4 + 8 = 15 nodes.

(a) Fibonacci tree of height 4 (b) Complete tree of heigt
AVL trees

3. You are given an array of distinct integersig, a1, as, . .., a,_1. YOu are also given an integérYour task
is to find out whether = a; + a; for distinct indicesi, j (0 < i < j < n — 1). Propose an algorithm to
solve this problem. Your algorithm must have an expected running tinQgof. (6)

Solution Insertag, ay, as, . .., a,_1 in a hash table. Subsequently, for each 0,1,2,...,n — 1, if t # 2a;, search for
t — a; in the hash table. If any of the searches succeeds, reuenlf all thesen searches fail, returfal se.

Each insertion and searching in the hash table taKég expected running time, so the expected running time
of this algorithm isO(n).

— Page 30of4 —

Roll no: Name:

4. You have a collection of three-Rupee coing; seven-Rupee coing,eleven-Rupee coins, andsixteen-
Rupee coins. (These need not be actual coins, but tokens worthvdlaes.) Given an integer > 0, your
task is to determine whether a sumroRupees can be exchanged exactly by coins from your collection.
As an example, let = 1, s = 2, ¢t = 3, andu = 4. Thirty Rupees can be exchangedras 7 + 16 or as
3+11+16 (butnotas3 +3+ 3+ 3+ 7+ 11, since you do not have so many three-rupee coins), whereas
31 Rupees cannot at all be exchanged by the coins in this collection (try it!).

Describe arD(n?)-time algorithm to solve this problem. Your algorithm does not have to find agehan
(when it exists). It suffices to find out only whether a change is possitet. (6)

Solution i nt existsChange (int r, int s, int t, int u, int n)

{
int i, j, ALMAX], B[MAX];
[+ O(n)-tine initialization */
for (i=0; i<=n; ++i) Ali] = B[i] = 0;
/= Check possibilities with 3- and 7-Re coins in O(n?) tine =/
for (i=0; i<=min(r,n/3); ++i) {
for (j=0; j<=min(s,n/7); ++) {
if (3xi + 7xj > n) break; else Al 3xi + 7xj] = 1;
}
}
/= Check possibilities with 11- and 16-Re coins in O(n?) time =/
for (i=0; i<=min(r,n/11); ++i) {
for (j=0; j<=min(s,n/16); ++j) {
if (11xi + 16*j > n) break; else B[11lxi + 16*j] = 1;
}
}
/+ Combine the possibilities in O(n) time */
for (i=0; i<=n; ++i) {
if ((Ali] == 1) & (B[n-i] == 1)) { return 1; }
/+* No possibilities |ocated */
return O;
}

— Page 4 of 4 —

