
CS21003 Algorithms I, Autumn 2011–12

Mid-Semester Test

Maximum marks: 30 Date: September 27, 2011 Duration: Two hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. A treap T is a binary search tree with each node storing (in
addition to a value) a priority. The priority of any node is not
smaller than the priorities of its children. The root is the node with
the highest priority. Unlike heaps, a treap is not forced to satisfy
the heap-structure property. An example of a treap is given in the
adjacent figure, where the pair(x, y) stored in a node indicates that
x is the value of the node, andy is the priority of the node. Thex
values satisfy binary-search-tree ordering, and they values satisfy
heap ordering.

30,25

17,20

13,16 22,11

16,13

37,18

42,15

39,9 47,12

(a) Design anO(h(T))-time algorithm to insert a valuex with priority y in a treap. (Hint: Use rotations.)(6)

Solution First, insertx in the tree using the standard BST-insertion procedure. This insertion may violate heap ordering,
that is, we may encounter a situation where a nodeu has a priority larger than the priority of its parentp.
Depending upon whetheru is the left or the right child ofp, we make a right or left rotation makingu the parent
of p. Such a situation is demonstrated in the figure below. The larger priority value moves by one level up the
tree, and may again be larger than the priority of its new parent. This violation of heap ordering is repaired
by another rotation. This process is repeated until heap ordering is restored, or the node with a large priority
reaches the root of the treap.

LL

p

u

LR R

R

LL LR

u

p

— Page 1 of 4 —

Roll no: Name:

(b) Demonstrate how your algorithm inserts the value19 with priority 23 in the treap of Page 1. Show
clearly all the major steps of the algorithm (instead of drawing only the final result). (6)

Solution

30,25

17,20

13,16 22,11

16,13

37,18

42,15

39,9 47,12 47,12

30,25

17,20 37,18

42,15

39,916,13

13,16 22,11

19,23

42,15

39,9

13,16

22,11 47,12

30,25

17,20 37,18

16,13

19,23

(a) The original treap

(c) Another rotation necessary

47,12

30,25

37,18

42,15

39,9

19,23

22,1117,20

13,16

16,13

(d) Heap ordering restored

(b) After BST insertion (rotation needed)

Insertion
path

— Page 2 of 4 —

Roll no: Name:

2. Prove or disprove: For all integersh > 0, any AVL tree of heighth + 1 contains strictly more nodes than
any AVL tree of heighth. (6)

Solution False: A Fibonacci tree of height four consists of onlyF4+3 − 1 = F7 − 1 = 13 − 1 = 12 nodes, whereas a
full binary tree of height three contains1 + 2 + 4 + 8 = 15 nodes.

(a) Fibonacci tree of height 4 (b) Complete tree of height 3

AVL trees

3. You are given an array ofn distinct integersa0, a1, a2, . . . , an−1. You are also given an integert. Your task
is to find out whethert = ai + aj for distinct indicesi, j (0 6 i < j 6 n − 1). Propose an algorithm to
solve this problem. Your algorithm must have an expected running time ofO(n). (6)

Solution Inserta0, a1, a2, . . . , an−1 in a hash table. Subsequently, for eachi = 0, 1, 2, . . . , n − 1, if t 6= 2ai, search for
t − ai in the hash table. If any of the searches succeeds, returntrue. If all thesen searches fail, returnfalse.

Each insertion and searching in the hash table takesO(1) expected running time, so the expected running time
of this algorithm isO(n).

— Page 3 of 4 —

Roll no: Name:

4. You have a collection ofr three-Rupee coins,s seven-Rupee coins,t eleven-Rupee coins, andu sixteen-
Rupee coins. (These need not be actual coins, but tokens worth thesevalues.) Given an integern > 0, your
task is to determine whether a sum ofn Rupees can be exchanged exactly by coins from your collection.
As an example, letr = 1, s = 2, t = 3, andu = 4. Thirty Rupees can be exchanged as7 + 7 + 16 or as
3 + 11 + 16 (but not as3 + 3 + 3 + 3 + 7 + 11, since you do not have so many three-rupee coins), whereas
31 Rupees cannot at all be exchanged by the coins in this collection (try it!).

Describe anO(n2)-time algorithm to solve this problem. Your algorithm does not have to find a change
(when it exists). It suffices to find out only whether a change is possibleor not. (6)

Solution int existsChange (int r, int s, int t, int u, int n)
{

int i, j, A[MAX], B[MAX];

/* O(n)-time initialization */
for (i=0; i<=n; ++i) A[i] = B[i] = 0;

/* Check possibilities with 3- and 7-Re coins in O(n2) time */
for (i=0; i<=min(r,n/3); ++i) {

for (j=0; j<=min(s,n/7); ++j) {
if (3*i + 7*j > n) break; else A[3*i + 7*j] = 1;

}
}

/* Check possibilities with 11- and 16-Re coins in O(n2) time */
for (i=0; i<=min(r,n/11); ++i) {

for (j=0; j<=min(s,n/16); ++j) {
if (11*i + 16*j > n) break; else B[11*i + 16*j] = 1;

}
}

/* Combine the possibilities in O(n) time */
for (i=0; i<=n; ++i) {

if ((A[i] == 1) && (B[n-i] == 1)) { return 1; }
}

/* No possibilities located */
return 0;

}

— Page 4 of 4 —

