

Artificial Intelligence

CS60045

Decision Tree Learning

Representation of Concepts

- Decision trees: <u>disjunction of conjunction of attributes</u>
 - (Sunny AND Normal) OR (Overcast) OR (Rain AND Weak) +
 - More powerful representation
 - Larger hypothesis space H
 - Can be represented as a tree
 - Common form of decision making in humans

Rectangle learning....

Disjunctions of Conjunctions (union of rectangles)

Training Examples

Day	Outlook	Temp	Humidity	Wind	PlayTennis?
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Trees

- Decision tree to represent learned target functions
 - Each internal node tests an attribute
 - Each branch corresponds to <u>attribute value</u>
 - Each leaf node assigns a classification
- Can be represented by logical formulas

Representation in Decision Trees

```
    Example of representing rule in DT's:
    if outlook = sunny AND humidity = normal
OR
    if outlook = overcast
OR
    if outlook = rain AND wind = weak
    then playtennis
```

- ['] Decision Tree Construction:
 - Find the best structure
 - Given a training data set

Applications of Decision Trees

- Instances describable by a fixed set of attributes and their values
- Target function is discrete valued
 - 2-valued
 - N-valued
 - But can approximate continuous functions
- Disjunctive hypothesis space
- Possibly noisy training data
 - Errors, missing values, ...
- Examples:
 - Equipment or medical diagnosis
 - Credit risk analysis
 - Calendar scheduling preferences

Decision Trees

Given distribution Of training instances Draw axis parallel Lines to separate the Instances of each class

Attribute 1

Decision Tree Structure

Attribute 1

Decision Tree Structure

Top-Down Construction

- Start with empty tree
- Main loop:
 - 1. Split the "best" decision attribute (A) for next node
 - 2. Assign *A* as decision attribute for node
 - 3. For each value of *A*, create new descendant of node
 - 4. Sort training examples to leaf nodes
 - 5. If training examples perfectly classified, STOP, Else iterate over new leaf nodes
- Grow tree just deep enough for perfect classification
 - If possible (or can approximate at chosen depth)
- Which attribute is best?

Best attribute to split?

Best attribute to split?

Best attribute to split?

Which split to make next?

Which split to make next?

Attribute 1

Principle of Decision Tree Construction

- Finally we want to form pure leaves
 - Correct classification
- Greedy approach to reach correct classification
 - 1. Initially treat the entire data set as a single box
 - 2. For each box choose the spilt that reduces its impurity (in terms of class labels) by the maximum amount
 - 3. Split the box having highest reduction in impurity
 - 4. Continue to Step 2
 - 5. Stop when all boxes are pure

Choosing Best Attribute?

- Consider 64 examples, 29⁺ and 35⁻
- Which one is better?

• Which is better?

Entropy

- A measure for
 - uncertainty
 - purity
 - information content
- Information theory: optimal length code assigns (-log₂*p*) bits to message having probability *p*
- *S* is a sample of training examples
 - p_+ is the proportion of positive examples in *S*
 - p_{-} is the proportion of negative examples in *S*
- Entropy of *S*: average optimal number of bits to encode information about certainty/uncertainty about *S*

 $Entropy(S) = p_{+}(-\log_{2}p_{+}) + p_{-}(-\log_{2}p_{-}) = -p_{+}\log_{2}p_{+} - p_{-}\log_{2}p_{-}$

• Can be generalized to more than two values

Entropy

- Entropy can also be viewed as measuring
 - purity of S,
 - uncertainty in S,
 - information in S, ...
- Example: values of entropy for p+=1, p+=0, p+=.5
- Easy generalization to more than binary values
 - $\Sigma_{i=1}^{n} p_i *(-\log_2 p_i)$, i=1...n
 - i is + or for binary
 - i varies from 1 to n in the general case

Choosing Best Attribute?

- Consider 64 examples (29⁺,35⁻) and compute entropies:
- Which one is better?

• Which is better?

Information Gain

• *Gain*(*S*,*A*): reduction in entropy after choosing attr. *A*

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$29^+, 35^- A_1 = E(S) = 0.993$$

$$0.650 + t = 0.522$$

$$29^+, 35^- A_2 = 0.993$$

$$0.650 + t = 0.522$$

$$29^+, 35^- A_2 = 0.993$$

$$15^+, 19^- A_2 = 0.993$$

$$29^+, 35^- A_2 = 0.993$$

$$15^+, 19^- A_2 = 0.993$$

$$29^+, 35^- A_2 = 0.993$$

$$0.937^- t = 0.619$$

$$18^+, 33^- = 0.619$$

$$11^+, 2^-$$

$$6ain: 0.121$$

$$22^-$$

Gain function

- Gain is measure of how much can
 - Reduce uncertainty
 - Value lies between 0,1
 - What is significance of
 - ▶ gain of 0?
 - example where have 50/50 split of +/- both before and after discriminating on attributes values
 - ▶ gain of 1?
 - Example of going from "perfect uncertainty" to perfect certainty after splitting example with predictive attribute
 - Find "patterns" in TE's relating to attribute values

Move to locally minimal representation of TE's

Training Examples (re-look)

Day	Outlook	Temp	Humidity	Wind	PlayTennis?
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Determine the Root Attribute

Gain (S, Humidity) = 0.151

Gain (S, Outlook) = 0.246

Gain (S, Wind) = 0.048

Gain (S, Temp) = 0.029

Sort the Training Examples 9+, 5- {D1,...,D14} Outlook Sunny Rain Overcast {D3,D7,D12,D13} D1,D2,D8,D9,D11 {D4,D5,D6,D10,D15} 2+. 3-4+, 0-3+, 2-? Yes ? $S_{sunnv} = \{D1, D2, D8, D9, D11\}$ Gain (S_{sunnv} , Humidity) = .970 $Gain (S_{sunny}, Temp) = .570$ Gain (S_{sunnv} , Wind) = .019

Final Decision Tree for Example

Overfitting the Data

- Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization performance.
 - There may be noise in the training data the tree is fitting
 - The algorithm might be making decisions based on very little data
- A hypothesis *h* is said to overfit the training data if the is another hypothesis, h', such that *h* has smaller error than *h*' on the training data but *h* has larger error on the test data than *h*'.

Complexity of tree

Overfitting

Attribute 1

When to stop splitting further?

Attribute 1

Overfitting in Decision Trees

• Consider adding *noisy* training example (should be +):

Day	Outlook	Temp	Humidity	Wind	Tennis?
D15	Sunny	Hot	Normal	Strong	No

• What effect on earlier tree?

Overfitting: An Example

Avoiding Overfitting

- Two basic approaches
 - **Prepruning:** Stop growing the tree at some point during construction when it is determined that there is not enough data to make reliable choices.
 - Postpruning: Grow the full tree and then remove nodes that seem not to have sufficient evidence. (more popular)
- Methods for evaluating subtrees to prune:
 - Cross-validation: Reserve hold-out set to evaluate utility (more popular)
 - Statistical testing: Test if the observed regularity can be dismissed as likely to be occur by chance
 - Minimum Description Length: Is the additional complexity of the hypothesis smaller than remembering the exceptions ?

This is related to the notion of regularization that we will see in other contexts– keep the hypothesis simple.

Reduced-Error Pruning

- A post-pruning, cross validation approach
 - Partition training data into "grow" set and "validation" set.
 - Build a complete tree for the "grow" data
 - Until accuracy on validation set decreases, do:
 - For each non-leaf node in the tree
 - Temporarily prune the tree below; replace it by majority vote. Test the accuracy of the hypothesis on the validation set Permanently prune the node with the greatest increase in accuracy on the validation test.
- Problem: Uses less data to construct the tree
- Sometimes done at the rules level

General Strategy: Overfit and Simplify

Rule post-pruning

- Allow tree to grow until best fit (allow overfitting)
- Convert tree to equivalent set of rules
 - One rule per leaf node
 - Prune each rule independently of others
 - Remove various preconditions to improve performance
 - Sort final rules into desired sequence for use

Example of Rule post pruning

- IF (Outlook = Sunny) ^ (Humidity = High)
 THEN PlayTennis = No
- IF (Outlook = Sunny) ^ (Humidity = Normal)
 THEN PlayTennis = Yes

Thank You!

