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Random variables

We consider only finitely many random variables V1, V2, . . . , Vn for a given problem.

The number n of rv’s we are dealing with may be large.

For our purpose, we assume that each rv is a proposition, that is, a statement about some constant

object in the problem we like to solve.

The domain of each Vi is {T , F}.

We write Pr[Vi = T ] as Pr[Vi ], and Pr[Vi = F ] as Pr[¬Vi ].

Our rv’s are, in general, not like the outcomes of tosses of fair coins.

That is, Pr[Vi ] and Pr[¬Vi ] may have arbitrary values in the real interval [0, 1].

Of course, we must always have Pr[Vi ] + Pr[¬Vi ] = 1.

Notational inconsistency: In the notation Pr[V ], we may refer to V as a variable, and also as the

constant V = T . The context would make it clear which interpretation we are talking about.



Joint distribution

For truth values θ1, θ2, . . . , θn, we write the joint probability as

Pr[V1 = θ1 ∧ V2 = θ2 ∧ · · · ∧ Vn = θn]

= Pr[V1 = θ1, V2 = θ2, . . . , Vn = θn]

= Pr[θ1, θ2, . . . , θn].

For example, Pr[A ∧ ¬B ∧ ¬C ∧ D] = Pr[A,¬B,¬C,D] = Pr[T , F , F , T ]. We will always have
∑

Pr[V1, V2, . . . , Vn] = 1.

Our rv’s are not necessarily independent, that is, in general,

Pr[V1 = θ1, V2 = θ2, . . . , Vn = θn] 6= Pr[V1 = θ1]× Pr[V2 = θ2]× · · · × Pr[Vn = θn].

The complete joint distribution on n variables will have 2n entries. This may be prohibitively large.

Even gathering data for so many possibilities is a practical infeasibility.

In order to make progress, we will oftentimes make some assumptions of independence that can be

derived from or that may approximate real-life situations.



Marginal probability

For a subset V of the rv’s, the probability that the variables in V assume given values can be obtained

by fixing these truth values of the variables in V and by summing the joint probabilities for all possible

values of the variables not in V :

Pr[V] =
∑

V

Pr[V1, V2, . . . , Vn].

Example: For five variables A, B,C,D, E, the probability of B = T , C = T , and E = F is

Pr[B,C,¬E] = Pr[A, B,C,D,¬E]+Pr[A, B,C,¬D,¬E]+Pr[¬A, B,C,D,¬E]+Pr[¬A, B,C,¬D,¬E].

Marginal distributions may again be infeasible to compute (for large n), because the sum may involve

a huge number of terms.



Conditional probability

LetV andW be sets of rv’s. The conditional probability that the variables inV assume specific values

given that the variables inW assume specific values is

Pr[V | W] =
Pr[V ,W]

Pr[W]
.

The probabilities on the right side are marginal probabilities.

Example: For five variables A, B,C,D, E, the probability that C = T given that B = T , D = T , and

E = F is

Pr[C | B,D,¬E]

=
Pr[B,C,D,¬E]

Pr[B,D,¬E]

=
Pr[A, B,C,D,¬E] + Pr[¬A, B,C,D,¬E]

Pr[A, B,C,D,¬E] + Pr[¬A, B,C,D,¬E] + Pr[A, B,¬C,D,¬E] + Pr[¬A, B,¬C,D,¬E]
.



Conditional probability: A cost saving

Continue with the example on the last slide.

Pr[C | B,D,¬E] =
Pr[B,C,D,¬E]

Pr[B,D,¬E]
=

Pr[A, B,C,D,¬E] + Pr[¬A, B,C,D,¬E]

Pr[B,D,¬E]
.

There is no need to explicitly compute the denominator. Instead we may compute

Pr[¬C | B,D,¬E] =
Pr[B,¬C,D,¬E]

Pr[B,D,¬E]
=

Pr[A, B,¬C,D,¬E] + Pr[¬A, B,¬C,D,¬E]

Pr[B,D,¬E]
.

Since

Pr[C | B,D,¬E] + Pr[¬C | B,D,¬E] = 1,

the individual probabilities can be obtained by eliminating the common denominator.



The chain rule

W = {W1,W2, . . . ,Wk}. Then:

Pr[V,W] = Pr[V,W1,W2, . . . ,Wk ]

= Pr[V | W1,W2, . . . ,Wk ] Pr[W1,W2, . . . ,Wk ]

= Pr[V | W1,W2, . . . ,Wk ] Pr[W1 | W2, . . . ,Wk ] Pr[W2, . . . ,Wk ]

= Pr[V | W1,W2, . . . ,Wk ] Pr[W1 | W2, . . . ,Wk ] Pr[W2 | W3, . . . ,Wk ] Pr[W3, . . . ,Wk ]

· · · Pr[V | W1,W2, . . . ,Wk ] Pr[W1 | W2, . . . ,Wk ] Pr[W2 | W3, . . . ,Wk ] · · ·Pr[Wk−1 | Wk ] Pr[Wk ].

Example: For five variables A, B,C,D, E, we have

Pr[¬A,C,¬D, E] = Pr[¬A | C,¬D, E] Pr[C | ¬D, E] Pr[D | E] Pr[E].



Bayes rule

Let V andW two sets of rv’s. By the chain rule, we have

Pr[V ,W] = Pr[V | W] P[W] = Pr[W | V] P[V].

Therefore

Pr[V | W] =
Pr[W | V] P[V]

P[W]
.

Suppose that V are cause variables, andW are effect variables.

The probability Pr[W | V] is the probability of the effects given the causes [prior probability].

The probability Pr[V | W] is the probability of the causes given the effects [posterior probability].

The Bayes rule connects these two probabilities.



Example domain: Medical diagnosis

A doctor learns in a medical college (and later during experience buildup)

– What are the diseases? How probable these are in a population?

– What are the probable symptoms of each disease?

These are all prior information.

You do not go to a doctor for knowing these information.

You tell your symptoms to the doctor.

The doctor diagnoses what is/are the most probable causes of your medical condition.

Symptoms (like fever or abdominal pain) may be shared by many illnesses.

The combination you have gives the doctor a best guess for what happened to you. He may prescribe

medicine or further clinical tests to confirm his diagnosis.

A doctor converts his/her prior knowledge to case-specific posterior knowledge.



Another example domain: Paleontology

A dinosaur fossil or a fossilized dinosaur footprint is discovered.

The team of paleontologists plan to determine several facts from the fossil.

– The age of the dinosaur.

– The type of the dinosaur.

– What the habits of the dinosaur were.

– How the animal lived.

– How the animal died.

– . . .

All the team knows is a set of prior probabilities associated with the animals.

The questions are all posterior in nature.

The team needs to make good guesses from the evidence they have (they may generate more evi-

dence by modern tools like CAT scans).



Yet another example domain: Forensic investigation

A crime (like murder of bank heist) is committed.

Detectives rush to the crime scene to gather whatever tiny evidences are left by the perpetrator(s).

They have a vast prior knowledge of criminals, crime scenes, type of evidences, and so on.

Their job is to convert the collected evidences in view of their knowledge to potential suspect(s).

Once again, this is a case of prior-to-posterior conversion.



Probabilistic inference

The last three examples illustrate the process.

You have a set V of random variables.

Specific values for a subset E of these variables are available as evidence.

For a random variable V , we need to compute the probability of V (and ¬V ) given the known values

of the evidence variables E .

Pr[V | E ] =
Pr[V , E ]

Pr[E ]

The problem is well-defined and well-understood.

The computations may be infeasible if there are many variables.

The tiny cost saving made by avoiding an explicit computation of the denominator cannot address this

infeasibility.



Probabilistic inference: A toy example

Consider the following joint distribution of five rv’s A, B,C,D, E. The table lists the 25 = 32 probabil-
ities against the values a, b, c, d, e of the rv’s.

a b c d e Pr[a, b, c, d, e]

T T T T T 0.005

T T T T F 0.095

T T T F T 0.021

T T T F F 0.001

T T F T T 0.010

T T F T F 0.025

T T F F T 0.008

T T F F F 0.007

T F T T T 0.015

T F T T F 0.123

T F T F T 0.012

T F T F F 0.022

T F F T T 0.067

T F F T F 0.057

T F F F T 0.016

T F F F F 0.032

a b c d e Pr[a, b, c, d, e]

F T T T T 0.024

F T T T F 0.012

F T T F T 0.018

F T T F F 0.051

F T F T T 0.019

F T F T F 0.003

F T F F T 0.020

F T F F F 0.017

F F T T T 0.079

F F T T F 0.014

F F T F T 0.021

F F T F F 0.102

F F F T T 0.007

F F F T F 0.009

F F F F T 0.047

F F F F F 0.041



Probabilistic inference: A toy example

Suppose that B and ¬E are supplied as evidence. We want to find the probability of C.

Pr[C | B,¬E] =
Pr[B,C,¬E]

Pr[B,¬E]
.

Pr[¬C | B,¬E] =
Pr[B,¬C,¬E]

Pr[B,¬E]
.

Pr[B,C,¬E] = Pr[A, B,C,D,¬E] + Pr[A, B,C,¬D,¬E] + Pr[¬A, B,C,D,¬E] + Pr[¬A, B,C,¬D,¬E]

= 0.095 + 0.001 + 0.012 + 0.051

= 0.159.

Pr[B,¬C,¬E] = Pr[A, B,¬C,D,¬E] + Pr[A, B,¬C,¬D,¬E] + Pr[¬A, B,¬C,D,¬E] + Pr[¬A, B,¬C,¬D,¬E]

= 0.025 + 0.007 + 0.003 + 0.017

= 0.052.

Pr[C | B,¬E] =
0.159

0.159 + 0.052

≈ 0.754.



Conditional independence

For n variables, the size of the joint distribution is 2n.

This may be infeasibly large for large values of n.

If all the variables were independent, only n tables with two entries each would suffice.

The calculation would still involve an exponential number of steps.

Moreover, the assumption that all variables are independent is nowhere near a model of reality.

In view of this, belief networks are introduced.

These networks depend on the notion of conditional independence.

Conditional independence is natural in many real-life examples.

Even if the assumption of conditional independence is not fully accurate, the approximations it pro-

duces are often a reasonable model of reality.



Conditional independence

Let U , V , andW be sets of random variables.

U is said to be conditionally independent of V , given (the values of the variables in)W , if:

Pr[U | V ,W] = Pr[U | W]

We denote this as IND(U ,V | W).

This means that the variables V do not supply more information on the variables U than is already

provided byW .

Therefore, in the probability calculations of the formPr[U | V ,W], it suffices to computePr[U | W],
completely ignoring the variables V .



Conditional independence

Let U consist of a single variable U, and V a single variable V . Then, the definition of conditional

probability gives Pr[U | V ,W] = Pr[U, V | W]/Pr[V | W]. By conditional independence,

Pr[U | V ,W] = Pr[U | W]. Therefore, we have:

Pr[U, V | W] = Pr[U | W] Pr[V | W]

For any number of variables V1, V2, . . . , Vk mutually conditionally independent givenW , we have:

Pr[V1, V2, . . . , Vk | W] = Pr[V1 | W] Pr[V2 | W] · · · Pr[Vk | W]

IfW is the empty set, then V1, V2, . . . , Vk are unconditionally independent of one another, and we

have:

Pr[V1, V2, . . . , Vk ] = Pr[V1] Pr[V2] · · · Pr[Vk ]



Bayes networks

Also called Bayesian networks, belief networks, and causal networks.

A Bayes network on n random variables V1, V2, . . . , Vn is a DAG (directed acyclic graph) such that:

• The graph contains n nodes, one for each variable.

• The edges in the graph are direct causal links. For every directed edge (U, V) in the graph, U

is called a parent of V . The set of all parents of V is denoted by P(V).

• Let V be a node, andW a set of nodes neither of which is a descendant of V . Then, V is

conditionally independent ofW given P(V), that is, IND(V ,W | P(V)), that is,

Pr[V | W,P(V)] = Pr[V | P(V)].



Joint distribution in a Bayes network

Theorem: Let V1, V2, . . . , Vn be all the variables, that is, vertices (not their values) in a Bayes network.

Then:

Pr[V1, V2, . . . , Vn] =
n∏

i=1

Pr[Vi | P(Vi)]

Proof Since the Bayes network is a DAG, we have a topological ordering of the vertices in the network.

Let V1, V2, . . . , Vn be the reverse of such an ordering. By the chain rule, we have

Pr[V1, V2, . . . , Vn] = Pr[V1 | V2, V3, . . . , Vn] Pr[V2 | V3, V4, . . . , Vn] · · · Pr[Vn−1 | Vn] Pr[Vn].

By the chosen ordering, neither of Vi+1, Vi+2, . . . , Vn is a descendant of Vi . By conditional indepen-

dence in a Bayes network, we then have Pr[Vi | Vi+1, Vi+2, . . . , Vn] = Pr[Vi | P(Vi)], so

Pr[V1, V2, . . . , Vn] = Pr[V1 | P(V1)] Pr[V2 | P(V2)] · · · Pr[Vn−1 | P(Vn−1)] Pr[Vn | P(Vn)].

Finally, note that Vn has no parents, so Pr[Vn | P(Vn)] = Pr[Vn]. ◭



Conditional Probability Tables (CPTs)

The formula for the joint distribution indicates that it suffices to store the probabilities Pr[Vi | P(Vi)]
only, for each i.

If k > 0 is the number of parents of Vi , then the table against Vi contains 2k rows.

Each row gives Pr[Vi | P(Vi)] for one truth assignment of P(Vi).

We can calculate Pr[¬Vi | P(Vi)] = 1− Pr[Vi | P(Vi)], so we do not need a separate table of 2k

rows for storing these.

If Vi has no parents (that is, k = 0), then only the unconditional probability Pr[Vi ] is stored, and we

calculate Pr[¬Vi ] = 1− Pr[Vi ].



Example

Professor Foojit lives in an apartment building with two elderly neighbors David and Emil on the same

floor. Foojit is worried about protecting his latest research findings, so he has set up a burglar alarm in

his apartment. If he is not home, somebody needs to react to the alarm. Both David and Emil agree

to inform police independently in case they hear an alarm. However, the alarm is sometimes triggered

by cockroaches too. David can hear the alarm if he is at home and not in the wash room, whereas

Emil is a bit short of hearing, so she can miss the sound if her music is playing. Finally, both David

and Emil may mistakenly take the ring tone of the security guard or of the janitor as the alarm sound.

Consider the following random variables:

A: The alarm rings.

B: There is a burglar in Foojit’s apartment.

C: Cockroaches are active in Foojit’s apartment.

D: David hears and interprets the alarm correctly and calls the police.

E: Emil hears and interprets the alarm correctly and calls the police.

The direct causal relations are: B→A, C→A, A→D, and A→E.



Example: The Bayes network with CPTs
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Example: Probability calculations

• Pr[There is a burglary. There is no cockroach activity. The alarm rings. Neither David nor Emil calls the police.]

Pr[A, B,¬C,¬D,¬E] = Pr[A | B,¬C] Pr[B] Pr[¬C] Pr[¬D | A] Pr[¬E | A]

= 0.800 × 0.005 × (1 − 0.020)× (1 − 0.750)× (1 − 0.600)

= 0.000392

• Pr[There is a burglary. There is no cockroach activity. The alarm rings. Only David calls the police.]

Pr[A, B,¬C,D,¬E] = Pr[A | B,¬C] Pr[B] Pr[¬C] Pr[D | A] Pr[¬E | A]

= 0.800 × 0.005 × (1 − 0.020)× 0.750 × (1 − 0.600)

= 0.001176

• Pr[There is a burglary. There is no cockroach activity. The alarm rings. The police is called.]

Pr[A, B,¬C,D,¬E] + Pr[A, B,¬C,¬D, E] + Pr[A, B,¬C,D, E]

= Pr[A | B,¬C] Pr[B] Pr[¬C]
(

Pr[D | A] Pr[¬E | A] + Pr[¬D | A] Pr[E | A] + Pr[D | A] Pr[E | A]
)

= Pr[A | B,¬C] Pr[B] Pr[¬C]
(

1 − Pr[¬D | A] Pr[¬E | A]
)

= 0.800 × 0.005 × (1 − 0.020)×
(

1 − (1 − 0.750)× (1 − 0.600)
)

= 0.003528



Example: Marginal distributions

• Pr[A] = Pr[A | B,C] Pr[B,C]+Pr[A | B,¬C] Pr[B,¬C]+Pr[A | ¬B,C] Pr[¬B,C]+Pr[A | ¬B,¬C] Pr[¬B,¬C] =
0.900×0.005×0.020+0.800×0.005×(1−0.020)+0.250×(1−0.005)×0.020+0.000×(1−0.005)×(1−0.020) =
0.008985.

• Pr[¬A] = 1 − Pr[A] = 1 − 0.008985 = 0.991015.

• Pr[B] = 0.005

• Pr[¬B] = 1 − 0.005 = 0.995

• Pr[C] = 0.020

• Pr[¬C] = 1 − 0.020 = 0.980.

• Pr[D] = Pr[D | A] Pr[A] + Pr[D | ¬A] Pr[¬A] = 0.750 × 0.008985 + 0.200 × 0.991015 = 0.20494175.

• Pr[¬D] = 1 − Pr[D] = 1 − 0.20494175 = 0.79505825.

• Pr[E] = Pr[E | A] Pr[A] + Pr[E | ¬A] Pr[¬A] = 0.600 × 0.008985 + 0.100 × 0.991015 = 0.1044925.

• Pr[¬E] = 1 − Pr[E] = 1 − 0.1044925 = 0.8955075.



Example: Marginal distributions

• Pr[A, B] = Pr[A, B,C]+Pr[A, B,¬C] = Pr[A | B,C] Pr[B,C]+Pr[A | B,¬C] Pr[B,¬C] = Pr[A | B,C] Pr[B] Pr[C]+
Pr[A | B,¬C] Pr[B] Pr[¬C] = 0.900 × 0.005 × 0.020 + 0.800 × 0.005 × (1 − 0.020) = 0.00401

• Pr[A,¬B] = Pr[A | ¬B,C] Pr[¬B] Pr[C] + Pr[A | ¬B,¬C] Pr[¬B] Pr[¬C] = 0.004975

• Pr[¬A, B] = Pr[B]− Pr[A, B] = 0.00099

• Pr[¬A,¬B] = Pr[¬B]− Pr[A,¬B] = 0.990025

• Pr[A,C] = Pr[A, B,C] + Pr[A,¬B,C] = Pr[A | B,C] Pr[B] Pr[C] + Pr[A | ¬B,C] Pr[¬B] Pr[C] = 0.005065

• Pr[A,¬C] = Pr[A | B,¬C] Pr[B] Pr[¬C] + Pr[A | ¬B,¬C] Pr[¬B] Pr[¬C] = 0.00392

• Pr[¬A,C] = Pr[C]− Pr[A,C] = 0.014935

• Pr[¬A,¬C] = Pr[¬C]− Pr[A,¬C] = 0.97608



Example: Marginal distributions

• Pr[A,D] = Pr[D | A] Pr[A] = 0.750 × 0.008985 = 0.00673875

• Pr[A,¬D] = Pr[A]− Pr[A,D] = 0.008985 − 0.00673875 = 0.00224625

• Pr[¬A,D] = Pr[D | ¬A] Pr[¬A] = 0.200 × 0.991015 = 0.198203

• Pr[¬A,¬D] = Pr[¬A]− Pr[¬A,D] = 0.991015 − 0.198203 = 792812

• Pr[A, E] = Pr[E | A] Pr[A] = 0.600 × 0.008985 = 0.005391

• Pr[A,¬E] = Pr[A]− Pr[A, E] = 0.008985 − 0.005391 = 0.003594

• Pr[¬A, E] = Pr[E | ¬A] Pr[¬A] = 0.100 × 0.991015 = 0.0991015

• Pr[¬A,¬E] = Pr[¬A]− Pr[¬A, E] = 0.991015 − 0.0991015 = 0.8919135



Example: Marginal distributions

• Pr[B,D] = Pr[A, B,D] + Pr[¬A, B,D] = Pr[D | A, B] Pr[A, B] + Pr[D | ¬A, B] Pr[¬A, B] =
Pr[D | A] Pr[A, B] + Pr[D | ¬A] Pr[¬A, B] = 0.750 × 0.00401 + 0.200 × 0.00099 = 0.0032055

• Pr[B,¬D] = Pr[B]− Pr[B,D] = 0.005 − 0.0032055 = 0.0017945

• Pr[¬B,D] = Pr[A,¬B,D] + Pr[¬A,¬B,D] = Pr[D | A,¬B] Pr[A,¬B] + Pr[D | ¬A,¬B] Pr[¬A,¬B] =
Pr[D | A] Pr[A,¬B] + Pr[D | ¬A] Pr[¬A,¬B] = 0.750 × 0.004975 + 0.200 × 0.990025 = 0.20173625

• Pr[¬B,¬D] = Pr[¬B]− Pr[¬B,D] = 0.995 − 0.20173625 = 0.79326375

• Pr[B, E] = Pr[A, B, E] + Pr[¬A, B, E] = Pr[E | A, B] Pr[A, B] + Pr[E | ¬A, B] Pr[¬A, B] =
Pr[E | A] Pr[A, B] + Pr[E | ¬A] Pr[¬A, B] = 0.600 × 0.00401 + 0.100 × 0.00099 = 0.002505

• Pr[B,¬E] = Pr[B]− Pr[B, E] = 0.005 − 0.002505 = 0.002495

• Pr[¬B, E] = Pr[A,¬B, E] + Pr[¬A,¬B, E] = Pr[E | A,¬B] Pr[A,¬B] + Pr[E | ¬A,¬B] Pr[¬A,¬B] =
Pr[E | A] Pr[A,¬B] + Pr[E | ¬A] Pr[¬A,¬B] = 0.600 × 0.004975 + 0.100 × 0.990025 = 0.1019875

• Pr[¬B,¬E] = Pr[¬B]− Pr[¬B, E] = 0.995 − 0.1019875 = 0.8930125



Example: Marginal distributions

• Pr[A,D, E] = Pr[D | A, E] Pr[E | A] Pr[A] = Pr[D | A] Pr[E | A] Pr[A] = 0.750 × 0.600 × 0.008985 = 0.00404325

• Pr[A,D,¬E] = Pr[D | A] Pr[¬E | A] Pr[A] = 0.750 × (1 − 0.600)× 0.008985 = 0.0026955

• Pr[A,¬D, E] = Pr[¬D | A] Pr[E | A] Pr[A] = (1 − 0.750)× 0.600 × 0.008985 = 0.00134775

• Pr[A,¬D,¬E] = Pr[¬D | A] Pr[¬E | A] Pr[A] = (1 − 0.750)× (1 − 0.600)× 0.008985 = 0.0008985

• Pr[¬A,D, E] = Pr[D | ¬A] Pr[E | ¬A] Pr[¬A] = 0.200 × 0.100 × 0.991015 = 0.0198203

• Pr[¬A,D,¬E] = Pr[D | ¬A] Pr[¬E | ¬A] Pr[¬A] = 0.200 × (1 − 0.100)× 0.991015 = 0.1783827

• Pr[¬A,¬D, E] = Pr[¬D | ¬A] Pr[E | ¬A] Pr[¬A] = (1 − 0.200)× 0.100 × 0.991015 = 0.0792812

• Pr[¬A,¬D,¬E] = Pr[¬D | ¬A] Pr[¬E | ¬A] Pr[¬A] = (1 − 0.200)× (1 − 0.100)× 0.991015 = 0.7135308

• Pr[D, E] = Pr[A,D, E] + Pr[¬A,D, E] = 0.00404325 + 0.0198203 = 0.02386355

• Pr[D,¬E] = Pr[A,D,¬E] + Pr[¬A,D,¬E] = 0.0026955 + 0.1783827 = 0.1810782

• Pr[¬D, E] = Pr[A,¬D, E] + Pr[¬A,¬D, E] = 0.00134775 + 0.0792812 = 0.08062895

• Pr[¬D,¬E] = Pr[A,¬D,¬E] + Pr[¬A,¬D,¬E] = 0.0008985 + 0.7135308 = 0.7144293

Note: D and E are not independent.



Example: Marginal distributions

• Pr[A, B,D, E] = Pr[E | A, B,D] Pr[D | A, B] Pr[A, B] = Pr[E | A] Pr[D | A] Pr[A, B] = 0.6 × 0.75 × 0.00401 =
0.0018045

• Pr[¬A, B,D, E] = Pr[E | ¬A] Pr[D | ¬A] Pr[¬A, B] = 0.1 × 0.2 × 0.00099 = 0.0000198

• Pr[B,D, E] = Pr[A, B,D, E] + Pr[¬A, B,D, E] = 0.0018045 + 0.0000198 = 0.0018243

• Pr[A,¬B,D, E] = Pr[E | A] Pr[D | A] Pr[A,¬B] = 0.6 × 0.75 × 0.004975 = 0.00223875

• Pr[¬A,¬B,D, E] = Pr[E | ¬A] Pr[D | ¬A] Pr[¬A,¬B] = 0.1 × 0.2 × 0.990025 = 0.0198005

• Pr[¬B,D, E] = Pr[A,¬B,D, E] + Pr[¬A,¬B,D, E] = 0.00223875 + 0.0198005 = 0.02203925

• Pr[D, E] = Pr[B,D, E] + Pr[¬B,D, E] = 0.0018243 + 0.02203925 = 0.02386355



Example: Conditional probability [Probabilistic inference]

• Probability that Emil calls given that there is a burglary: Pr[E | B] =
Pr[B, E]

Pr[B]
=

0.002505

0.005
= 0.501

• Probability that there is a burglary given that Emil calls: Pr[B | E] =
Pr[B, E]

Pr[E]
=

0.002505

0.1044925
≈ 0.023973

• Probability that both David and Emil call given that there is a burglary:

Pr[D, E | B] =
Pr[B,D, E]

Pr[B]
=

0.0018243

0.005
= 0.36486

• Probability that there is a burglary given that both David and Emil call:

Pr[B | D, E] =
Pr[B,D, E]

Pr[D, E]
=

0.0018243

0.02386355
≈ 0.076447

• Probability that there is a burglary given that the alarm rings and both David and Emil call:

Pr[B | A,D, E] =
Pr[A, B,D, E]

Pr[A,D, E]
=

0.0018045

0.00404325
≈ 0.4462994

• Probability that the alarm rings given that neither David nor Emil calls:

Pr[A | ¬D,¬E] =
Pr[A,¬D,¬E]

Pr[¬D,¬E]
=

0.0008985

0.7144293
≈ 0.00125765



Conditional independencies in a Bayes network

From the definition of Bayes nets, it follows that:

Each variable in the net is independent of its non-descendants given its parents.

This is called local Markov property.

Examples in the Alarm network

• D is independent of E given A.

• D is not unconditionally independent of E.

• D is independent of B given A.

• B and C are unconditionally independent.

That is not all. A Bayes net offers more conditional independencies.

The alarm network is too small to explain all the cases.



Example: Your AI course may have an impact on what car you will own

Difficulty Preparation Intelligence

Marks

Grade

CGPA JobSatisfaction Car

You can Booleanize all the variables like Difficulty can be tough/easy, Grade can be high/low, and

Car can be expensive/cheap.



Another conditional independency in a Bayes net

Difficulty Preparation Intelligence

Marks

Grade

CGPA JobSatisfaction Car

The Markov blanket of a variable X consists of

all the parents of X ,

all the children of X , and

all the parents (except X ) of these children.

Markov blanket property

Given the Markov blanket of a variable in a Bayes net, the variable is independent of all

other variables in the net.

Examples

• The Markov blanket of Marks is {Difficulty, Preparation, Intelligence, Grade}. So Marks is

independent of CGPA given Difficulty, Preparation, Intelligence, and Grade.

• The Markov blanket of CGPA is {Grade, Job, Intelligence}. So CGPA is independent of

Marks given Grade, Job, and Intelligence.

This is slightly non-local, but the most general result tells us more.



Trails and colliders

Difficulty Preparation Intelligence

Marks

Grade

CGPA JobSatisfaction Car

An undirected path in a Bayes net is called a trail.

Undirected means you may go in the reverse directions

of one or more arrows on the edges. Repeated nodes

are not allowed on a trail.

An internal node X on a trail is called a collider if both

the arrows on the edges incident upon X point to X .

Examples

Consider the trail:

Preparation→ Marks← Intelligence→ Job← CGPA← Grade→ Satisfaction

Marks and Job are the colliders on this trail. Intelligence (also Grade) is not a collider because

the two edges incident on it are directed away from it. CGPA is not a collider too because one edge

incident on it goes in that node, whereas the other moves away from the node.

Neither Marks nor Job is a collider on the trail:

CGPA← Grade← Marks← Intelligence→ Job→ Car



Unconditional D-connection and D-separation

D stands for directional (or dependency-driven).

Two variables are called D-connected if there exists a collider-free trail between them.

Two variables are are called D-separated if they are not D-connected (that is, if every trail connecting

the two variables contains one or more colliders).

Examples
Difficulty Preparation Intelligence

Marks

Grade

CGPA JobSatisfaction Car

Although the trail between Preparation and Satisfaction

on the last slide contains colliders (Marks and Job),

these two variables are D-connected by the collider-free

trail Preparation→ Marks→ Grade→ Satisfaction.

There are only two trails between Preparation and Intelligence:

Preparation→ Marks← Intelligence

Preparation→ Marks→ Grade→ CGPA→ Job← Intelligence

Both the trails contain colliders, so Preparation and Intelligence are D-separated.



Handling colliders using evidences

An evidence is a set E of variables whose values are observed (that is, known or given).

Let X and Y be two variables not in E.

Let V be a collider on an X -Y trail. V blocks the trail unconditionally.

If V or any descendant of V is in E, then that collider is cleared.

However, E creates a block on the trail if E contains a non-collider variable on the trail.

The X -Y trail is called unblocked given E if

(i) all colliders (if any) on the trail are cleared by E, and

(ii) E does not create a block at a non-collider node on the trail.

X and Y are called D-connected given E if there exists an unblocked X -Y trail given E.

X and Y are called D-separated given E if they are not D-connected given E, that is, if all X -Y trails

are blocked by uncleared colliders and/or by non-collider variables in E.



Examples of conditional D-connection and D-separation

Difficulty Preparation Intelligence

Marks

Grade

CGPA JobSatisfaction Car

• The collider Marks on the trail

Preparation→ Marks← Intelligence

can be cleared by any one (or more) of the evidence variables

Marks, Grade, Satisfaction, CGPA, Job, and Car. The collider

Job on the trail

Preparation→ Marks→ Grade→ CGPA→ Job← Intelligence

can be cleared by either Job or Car (or both) as evidence variable(s).

It follows that Preparation and Intelligence are D-connected given Car as evidence.

• Difficulty and CGPA are unconditionally D-connected by the trail Difficulty→ Marks→ Grade→ CGPA.

Difficulty and CGPA are D-separated given Marks as evidence. First, this creates a new block on the trail:

Difficulty→ Marks→ Grade→ CGPA

Second, it clears the collider Marks but not the collider Job on the trail:

Difficulty→ Marks← Intelligence→ Job← CGPA

There are no other trails between Difficulty and CGPA.

Difficulty and CGPA are D-connected given Marks and Car as evidence. The additional evidence Car clears

the collider Job, unblocking the second trail.



Global Markov property

In short: D-separation⇒ independent.

Theorem: If two variables X and Y are D-separated given the evidence set E, then X and Y are

independent given E. ◭

Example: Difficulty and CGPA are independent given Marks as evidence.

Notes

• If E is empty in the theorem, then X and Y are unconditionally independent.

• This theorem can be generalized to mutually disjoint subsets X , Y , E of variables.

Exercise: Prove the local Markov property from the global Markov property.

Exercise: Prove the Markov blanket property from the global Markov property.


