
CS60045 Artificial Intelligence

Autumn 2023

Propositional Logic



Logical Reasoning

• So far, our intelligent agents can handle a variety of searches. That alone is not sufficient.

• AI agents must be capable of taking decisions and planning for the future.

• AI agents should often be able to do these new tasks in presence of uncertainty and/or imprecise

information.

• The actions are guided by a knowledge base which are available from the beginning and/or

gathered during the process.

• Whatever it does, it should be logical.

• Various types of logic

• Propositional logic

• Predicate logic

• Temporal logic

• Fuzzy logic



The language of propositional logic

Propositions

A proposition is a declarative statement that is either true or false, and nothing else.

Examples

It is raining.

2 is an even number.

Either I win or you lose.

If 2 + 2 = 5, then 3 + 3 = 6.

Non-examples

It may rain.

Is it raining?

x is an even number.

Please try to win.



The language of propositional logic

Atomic propositions

These are propositions that cannot be decomposed. These are also called atoms.

Composite propositions

These are recursively constructed as follows.

• [Negation] If P is a proposition, then ¬P is a proposition.

• [Disjunction] If P and Q are propositions, then P ∨ Q is also a proposition.

• [Conjunction] If P and Q are propositions, then P ∧ Q is also a proposition.

• [Implication] If P and Q are propositions, then P ⇒ Q is also a proposition.

• [Biconditional] If P and Q are propositions, then P ⇔ Q is also a proposition.

• [Disambiguation] If P is a proposition, then (P) is also a proposition.

Propositions are also called (propositional) sentences and well-formed formulas (wffs).

A literal is either an atomic proposition (a positive literal) or its negation (a negative literal).



Truth tables

P Q ¬P P ∨ Q P ∧ Q P ⇒ Q P ⇔ Q

F F T F F T T

F T T T F T F

T F F T F F F

T T F T T T T

Two wffs are called equivalent if they have the same truth table.

Examples

• [Implication elimination] P ⇒ Q ≡ ¬P ∨ Q.

• [Contraposition] P ⇒ Q ≡ ¬Q ⇒ ¬P.

• [Biconditional elimination] P ⇔ Q ≡ (P ⇒ Q) ∧ (P ⇐ Q). (P ⇐ Q means Q ⇒ P.)

• [De Morgan’s laws] ¬(P ∧ Q) ≡ ¬P ∨ ¬Q and ¬(P ∨ Q) ≡ ¬P ∧ ¬Q.

• [Distributive laws] P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R) and

P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R).



Example: Reach the center of the labyrinth

While walking in a labyrinth, you find yourself in front of three possible roads. The road on your left is

paved with gold, the road in front of you is paved with marble, and the road on your right is made of

small stones. Each road is protected by a guard. You talk to the guards, and this is what they tell.

• The guard of the gold road: “This road will bring you straight to the center. Moreover, if the

stones take you to the center, then also the marble takes you to the center.”

• The guard of the marble road: “Neither the gold nor the stones will take you to the center.”

• The guard of the stone road: “Follow the gold, and you will reach the center. Follow the marble,

and you will be lost.”

Given that all the guards are liars, which road should you take to reach the center?



Reach the center of the labyrinth: Formulation

Atomic propositions

G The gold road leads to the center

M The marble road leads to the center

S The stone road leads to the center

Composite propositions made from the statements of the guards

GG G ∧ (S ⇒ M)

GM ¬G ∧ ¬S

GS G ∧ ¬M

Knowledge base

KB ¬GG ∧ ¬GM ∧ ¬GS

Which of the following is/are true?

• KB ⇒ G

• KB ⇒ M

• KB ⇒ S



Reach the center of the labyrinth: Solution using truth tables

F and T are often written as 0 and 1.

G M S ¬GG ¬GM ¬GS KB

0 0 0 1 0 1 0

0 0 1 1 1 1 1

0 1 0 1 0 1 0

0 1 1 1 1 1 1

1 0 0 0 1 0 0

1 0 1 1 1 0 0

1 1 0 0 1 1 0

1 1 1 0 1 1 0

Conclusions

• The gold road will certainly not take you to the center.

• The marble road may or may not lead you to the center.

• The stone road will definitely lead you to the center.



Truth assignments

A truth assignment is giving a T or F value to each atomic proposition.

A truth assignment is also called a model or an interpretation.

For every model, the truth values of composite propositions built from the atomic propositions can be

obtained.

A wff is called satisfiable if it evaluates to T for at least one truth assignment.

A wff is called valid or a tautology if it evaluates to T for all truth assignments.

A wff is called a contradiction if it evaluates to F for all truth assignments.

Entailment: P entails Q if whenever P is true, Q is also true. P entails Q if and only if P ⇒ Q is a

tautology.

Contradiction: P ⇒ Q ≡ ¬P ∨ Q. The negation of this is ¬(P ⇒ Q) ≡ P ∧ ¬Q. Therefore P

entails Q if and only if P ∧ ¬Q is a contradiction.



Propositional theorem proving

Input: A knowledge base consisting of propositions P1, P2, P3, . . . , Pn, and a goal proposition Q.

Output: T or F depending on whether P1 ∧ P2 ∧ P3 ∧ · · · ∧ Pn entails Q or not.

Let M be a proof mechanism (procedure).

M is called sound if whenever M outputs T, P1 ∧ P2 ∧ P3 ∧ · · · ∧ Pn entails Q.

M is called complete if whenever P1 ∧ P2 ∧ P3 ∧ · · · ∧ Pn entails Q, M outputs T.

M is called total if it gives some output on all instances.

Notes

• Soundness guarantees that if M outputs T, then the entailment is true.

• Completeness guarantees that if the entailment is true, M will eventually output T.

• Neither soundness or completeness guarantees that M is bound to give the answer F when the

entailment is not true. In this case, M may actually fail to give any answer.

• M is an algorithm if it is sound and complete and total.



Propositional theorem proving is decidable

A computational problem is called decidable if it has an algorithm.

A computational problem is called semidecidable if it has a sound and complete procedure.

We can decide whether P1 ∧P2 ∧P3 ∧ · · ·∧Pn entails Q by constructing the truth table of P1 ∧P2 ∧
P3 ∧ · · · ∧ Pn ⇒ Q.

If there are n atomic propositions involved, then the truth table has 2n rows.

So the truth-table method is not an efficient algorithm for propositional theorem proving.



Rules of inference

Proceed by making a sequence of small logical steps.

Use the laws of propositional calculus (commutativity, associativity, distributivity, De Morgan’s laws).

The following rules are also often handy.

• Modus Ponens: P ⇒ Q and P entail Q.

• Modus Tollens: P ⇒ Q and ¬Q entail ¬P.

• And elimination: P ∧ Q entails P.

• Or introduction: P entails P ∨ Q.

• And introduction: P and Q entail P ∧ Q.

• Syllogism: P ⇒ Q and Q ⇒ R entail P ⇒ R.

• Disjunctive syllogism: P ∨ Q and ¬P entail Q.



Reach the center of the labyrinth: Solution by the rules of inference

The statements of the guards entail S

Using the rules of propositional calculus, we rewrite ¬GG as

¬GG ≡ ¬
(

G ∧ (S ⇒ M)
)

≡ ¬G ∨ ¬(¬S ∨ M) ≡ ¬G ∨ (S ∧ ¬M)

≡ (¬G ∨ S) ∧ (¬G ∨ ¬M).

¬GM ≡ ¬(¬G ∧ ¬S) ≡ G ∨ S.

And elimination from ¬GG gives ¬G ∨ S. By And introduction, we get

(¬G ∨ S) ∧ (G ∨ S).

By distributivity, we then have

(¬G ∧ G) ∨ S ≡ F ∨ S ≡ S.



Reach the center of the labyrinth: More about the rules of inference

The statements of the guards entail ¬G

And elimination from ¬GG gives ¬G ∨ ¬M. Moreover, ¬GS simplifies to ¬G ∨ M. And introduction

gives

(¬G ∨ ¬M) ∧ (¬G ∨ M) ≡ ¬G ∨ (¬M ∧ M) ≡ ¬G ∨ F ≡ ¬G.

The statements of the guards entail neither M nor ¬M

• How do we prove this?

• We may try for many steps to discover that we cannot derive M or ¬M.

• We will report failure when we are sufficiently tired.

• But that is not any proof.

Conclusion: The rules of inference do not immediately give an algorithm.



The conjunctive normal form (CNF)

• A literal is either an atomic proposition or a complement of an atomic proposition.

• A clause is a disjunction (or) of one or more literals.

• A wff is in CNF is it a conjunction (and) of clauses.

• CNFSAT is the problem of deciding whether a wff in the CNF is satisfiable (that is, T for at least

one truth assignment of the atomic propositions).

• Theorem: CNFSAT is NP-complete.

• SAT is the (more general) problem of deciding whether a wff is satisfiable.

• Theorem: SAT is NP-complete.

• TAUTOLOGY (resp. CONTRADICTION) is the problem of deciding whether a wff is a tautology

(resp. a contradiction).

• Theorem: TAUTOLOGY is coNP-complete.

• Theorem: CONTRADICTION is coNP-complete.



Every wff can be converted to CNF

We prove this by induction on the length of the wff φ.

Base: Every atom is in the CNF.

Induction:

Let φ = α ∧ β. By induction, α and β can be converted to CNF.

Let φ = α∨ β. By induction, we can write α = C1 ∧ C2 ∧ · · · ∧ Cm and β = D1 ∧ D2 ∧ · · · ∧ Dn,

where each Ci and each Dj are clauses. By distributivity, we can write φ as
∧

16i6m
16j6n

(Ci ∨ Dj).

Let φ = ¬α. By induction, we can write α = C1 ∧ C2 ∧ · · · ∧ Cm, where each Ci is a clause. By

De-Morgan’s law, ¬α = (¬C1) ∨ (¬C2) ∨ · · · ∨ (¬Cm). Now, use the case φ = α ∨ β. ◭

Note: We can write the truth table of ¬φ, get a DNF expression for ¬φ from the truth table, and then

complement it. But we prefer to avoid truth tables for there exponential sizes.

Example: ¬(p ⇒ q) ∨ (q ⇒ ¬r) ≡ ¬(¬p ∨ q) ∨ (¬q ∨ ¬r) ≡ (p ∧ ¬q) ∨ (¬q ∨ ¬r) ≡
(p ∨ ¬q ∨ ¬r) ∧ (¬q ∨ ¬q ∨ ¬r) ≡ (p ∨ ¬q ∨ ¬r) ∧ (¬q ∨ ¬r).



Resolution of clauses: A new rule of inference for CNF

Let C and D be two clauses containing a pair of complementary literals. Let C contain the literal ℓ,

and D the literal ¬ℓ. Then, we can write C = ℓ ∨ C′ and D = ¬ℓ ∨ D′. If C′ or D′ is empty, take it

as F. In this case, the resolvent of C and D is defined to be

Resℓ(C,D) = C′ ∨ D′.

We say that Resℓ(C,D) is obtained by resolving C and D upon the literal ℓ (or ¬ℓ).

Examples

• Res((p ∨ q ∨ ¬r), (p ∨ ¬q ∨ s)) = p ∨ ¬r ∨ s.

• Res((p ∨ ¬q ∨ r), (¬p ∨ q ∨ s ∨ ¬t)) = p ∨ r ∨ ¬p ∨ s ∨ ¬t ≡ T.

• Res(ℓ,¬ℓ ∨ p ∨ ¬q) = p ∨ ¬q.

• Res(ℓ,¬ℓ) = F.



Properties of resolution

Theorem: C and D entail Res(C,D).

Proof We have C ≡ ¬C′ ⇒ ℓ and D ≡ ℓ ⇒ D′. By syllogism, we have ¬C′ ⇒ D′ ≡ C′ ∨ D′. ◭

Resolution is sound. This theorem says that it never makes an error in the entailment procedure.

Resolution is not complete. Let p, q be atomic propositions. Then, p and q entail p ∨ q. However,

we cannot resolve p and q, because there is no literal to resolve upon.

Despite this badness, resolution has nice properties. Take a wff φ in CNF. Let S be the set of clauses

in φ. Keep on resolving pairs C,D of clauses in S, and adding Res(C,D) to S. Stop when the

resolutions of clauses in S cannot give any new clause. The final value of S is called the resolution

closure of φ (or of the set of clauses in φ). We denote this by RC(φ).

By an abuse of notations, we call this process resolution too.

The process stops after finitely many steps (because φ contains only finitely many literals, and each

clause in S is composed of a subset of these literals).



Ground resolution theorem

Theorem: φ is a contradiction if and only if RC(φ) contains the empty clause (that is, F).

Proof [If] φ entails all the clauses in RC(φ), so the presence of the empty cause in RC(φ) implies

φ ⇒ F, that is, φ is a contradiction.

[Only if] Suppose that RC(φ) contains only non-empty clauses. Let the atoms in φ be p1, p2, . . . , pn.

Define Si to be those clauses in RC(φ), in which pi or ¬pi is the largest-numbered literal. We take

S0 = ∅. We have RC(φ) =
n
⋃

i=1

Si . In the sequence i = 1, 2, . . . , n, we inductively keep on

supplying a truth value to pi so as to make all the clauses in Si true.

For each clause in Si , if the truth assignments of p1, p2, . . . , pi−1 already satisfy the clause, remove

the clause from Si . If Si becomes empty, assign any truth value to pi . Otherwise denote by S+

i

(resp. S−

i ) the (remaining) clauses in Si , that contain pi (resp.¬pi ). If both S+

i and S−

i are non-empty,

then pick C from S+

i and D from S−

i . Since RC(φ) is closed under resolution, Res(C,D) ∈ Sj for

some j < i (j 6= 0 because S0 = ∅). By the choices of C and D, Res(C,D) evaluates to F, a

contradiction to the induction hypothesis. Therefore either S+

i or S−

i must be empty. If S−

i is empty,

take pi = T. If S+

i is empty, take pi = F. ◭



Propositional theorem proving by resolution

The basic task is to prove whether the knowledge base consisting of propositions P1, P2, . . . , Pn

entails the goal Q.

This is logically equivalent to proving that (P1 ∧ P2 ∧ · · · ∧ Pn) ∧ ¬Q is a contradiction.

This is akin to proof by contradiction. Assume that all the propositions in the knowledge base to be

true. Assume also that the goal is false. Deduce that these assumptions lead to F.

This algorithm is called resolution refutation. Refutation is an AI nickname for contradiction.

All you need to do is:

• Convert (P1 ∧ P2 ∧ · · · ∧ Pn) ∧ ¬Q to CNF. Call this wff φ.

• Apply the resolution procedure on φ until either the empty clause is obtained as a resolvent

(return T in this case) or there are no further resolution possibilities (return F in this case).



Resolution refutation for finding the center of the labyrinth

[¬GG, ¬GM, and ¬GS entail S]

¬GG ≡ (¬G ∨ S) ∧ (¬G ∨ ¬M) gives the clauses C1 = ¬G ∨ S and C2 = ¬G ∨ ¬M .

¬GM gives the clause C3 = G ∨ S . ¬GS gives the clause C4 = ¬G ∨ M . Also take the clause

C5 = ¬S .

Resolve C1 and C3 on G to get C6 = S ∨ S = S . Resolve C5 and C6, to get the empty clause.

[¬GG, ¬GM, and ¬GS entail ¬G]

Start with the clauses C1,C2,C3,C4 as above, but with C5 = ¬(¬G) = G .

Resolve C1 and C3 on G to get C6 = ¬G ∨ ¬G = ¬G . Resolve C5 and C6, to get the empty clause.



Resolution refutation for finding the center of the labyrinth

[¬GG, ¬GM, and ¬GS does not entail M]

Start with the clauses C1 = ¬G∨ S, C2 = ¬G∨¬M, C3 = G∨ S, C4 = ¬G∨M, and C5 = ¬M.

First level of resolvents

C6 = ResG(C1,C3) = S, C7 = ResG(C2,C3) = ¬M ∨ S, C8 = ResG(C3,C4) = M ∨ S

C9 = ResM = ¬G (ResM(C4,C5) is the same as C9)

Second level of resolvents

No new resolvent can be added (for example, ResG(C9,C3) = S = C6, ResM(C7,C4) = C1,

ResM(C7,C8) = C6).

Truth assignment: Let us assign G,M, S in that order.

S1 = {C9}. So take G = F.

S2 = {C2,C4,C5}. C2 and C4 are already satisfied by G = F. To satisfy C5, take M = F.

S3 = {C1,C3,C6,C7,C8}. C1 and C7 are already satisfied. C3,C6,C8 are all satisfied by S = T.



Ordering strategies

Zeroth-level resolvents: Original clauses in φ.

First-level resolvents: Resolvents of zeroth-level resolvents.

Second-level resolvents: Resolvents of first-level resolvents with zeroth- and first-level resolvents.

i-th-level resolvents: Resolvents of (i − 1)-th level resolvents and j-th level resolvent for j 6 i − 1.

Breadth-first strategy

Start with the zeroth-level resolvents, then generate all first-level resolvents, then all second-level

resolvents, and so on.

Depth-first strategy

Recursively generate a first-level resolvent, then a second-level resolvent, then a third-level resolvent,

and so on.

Unit-preference strategy

A clause with a single literal is called a unit clause. Prefer unit clauses while computing resolvents

whenever applicable.


