CS60003 Algorithm Design and Analysis, Autumn 2010-11

End-Semester Examination

Maximum marks: 100 November 21, 2010 (FN) Total tidéours

Roll no: Name:

[Write your answers in the question paper itself. Be brief pratise. Answer afjuestions,

. The knapsack problem discussed in the class is an optimizatoblem. Consider the following decision
version of the knapsack problem. GiverobjectsO, O, . .., O, with respective weightsa, wo, . .., w,
and with respective profitg, po,...,p,, and given a knapsack of capacify and a profit boundP,
decide whether there exists a subcollection, O;,, . .., O;, of the given objects such thgijfz1 wy; < C

(knapsack capacity cannot be exceeded)@ﬁg1 pi; = P (atleast a profit of” can be made).

(@) Prove that the decision version of the knapsack problem easolved in polynomial time if and only
if the optimization version of the knapsack problem can beesbin polynomial time. (10)

— Page 1of 12 —

(b) Prove that the decision version of the knapsack problem iCldPplete.

(Hint: You may use the partition problem which, given poagtintegerss;, ag, . .., a, with A = """, a;,

decides whether there exists a subcollectigna;,, . . ., a;, with Zle a;; = A/2.) (20)

2. A cut in an undirected grapty = (V, E) is a partition of V' in two (disjoint) subsetsS, T. Define by
E(S,T) the set of all edges af with one endpoint irt and the other irf". The MAX-CUT problem is an

optimization problem that determines a <ytI" for which the size of the sdt (.S, T") (the number of cross
edges) is as large as possible.

Recall that in the Ford-Fulkerson algorithm, we have deatlh winimumcuts in order to solve the dual
problem of maximizing network flow. The Ford-Fulkerson algom is not truly polynomial-time, but has
variants that run in polynomial time in the input size. The X&EUT problem (more correctly, a suitable
decision version of this problem), on the other hand, is Nifa@lete (you are not asked to prove this).

Prof. Myopia proposes the following approximation algamit for solving the MAX-CUT problem.

— Page 2 of 12 —

1. Start with an arbitrary partitios, 7" of V.
2. Repeat the following two steps until no further vertex ement is possible:

(a) Foreach vertex € S, check whether the cytS —v, T'+v) has more cross edges th@gh 7');
and if so, delete from .S and includev in 7.

(b) Foreach vertex € T', check whether the cytS +v, T'—v) has more cross edges thegh 7');
and if so, delete from 7" and includev in S.

3. Returns, T'.
(@) Prove that Prof. Myopia'’s algorithm runs in polynomial tirfie the input size). (5)
(b) Prove or disprove: Prof. Myopia’s algorithm outputs theimgtl solution for bipartite graphs. (5)

— Page 30f 12 —

(c) Prove that the approximation ratio of Prof. Myopia’s algjom is1/2. (5)

(d) Demonstrate that this approximation ratio is tight (suggesnfinite family of graphs). (5)

— Page 4 0of 12 —

3. The subset-sum problem (SSP) decides whether a given tofiexf positive integers.;, as, .. ., a, has a
subcollection whose elements add up to a given positivgémte We proved that SSP is an NP-Complete
problem. Recall also that an algorithm is calfgkudo-polynomial-timef its running time is a polynomial
in the size of thainaryrepresentation of the input. We call an NP-Complete problaakly NP-Complete
if it admits a pseudo-polynomial-time algorithm. Provett8&P is weakly NP-Complete.

(Hint: The knapsack problem might help you. Also note thetuhary size ofi;, ag, ..., a, iSn+Y ;- a;.) (20)

— Page 50f 12 —

— Page 6 of 12 —

4. Consider the problem of finding theth smallest element in an array of n integers. Ms. Lucky proposes
the following randomized algorithm to solve this problenmeShooses a (uniformly) random elemenaf
A. She then uses the partitioning algorithm of Quick Sortdowith respect to the pivat. Suppose that
is placed in thé-th position after the partitioning (counting starts fra If k& = ¢, the algorithm returns.
If k& > i, then a recursive call is made on the smaller subarray (eftsiz 1) and with the sameé Finally, if
k < i, then a recursive call is made on the larger subarray (ofisizek) with i replaced byi — k. Deduce
that the expected running time of Ms. Lucky’s algorithm(Oiér log n). (Notice that this running time may
depend upori (in addition ton). In your calculations, you may suitably ignore this depemze.) (20)

— Page 7 of 12 —

5. You are given a set aof chords in a circle. Each chord may be viewed as an opaque pfesteng. Your
task is to determine which chords are visible (fully or plyi) from the center. An example is given below.
The dotted chords are the only chords that are not visibledwen partially) from the center.

<X
‘i&

%

— Page 80of 12 —

(@) Propose am)((n + h)logn)-time ray-sweep algorithm for solving this problem, whéres the total
number of intersections of the given chords. Clearly dbégctive events in your algorithm and how they are
handled. Assume that the chords are in general positiohjghao two of them share an endpoint, and no
three of them are concurrent. (20)

— Page 9of 12 —

(b) Mention relevant data structures that your algorithm ubks {he organization of the event queue and
the sweep-ray information). (5)

(c) Deduce that the running time of your algorithmO$(n + h) log n). (5)

— Page 10 of 12 —

For rough work. If used for continuation of answers from Pages 1-10, supply appropriate pointers earlier.

— Page 11 of 12 —

For rough work. If used for continuation of answers from Pages 1-10, supply appropriate pointers earlier.

— Page 12 of 12 —

