
CS60003 Algorithm Design and Analysis, Autumn 2010–11

End-Semester Examination

Maximum marks: 100 November 21, 2010 (FN) Total time:3 hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief andprecise. Answer allquestions.]

1. The knapsack problem discussed in the class is an optimization problem. Consider the following decision
version of the knapsack problem. Givenn objectsO1, O2, . . . , On with respective weightsw1, w2, . . . , wn

and with respective profitsp1, p2, . . . , pn, and given a knapsack of capacityC and a profit boundP ,
decide whether there exists a subcollectionOi1 , Oi2 , . . . , Oik of the given objects such that

∑k
j=1

wij 6 C

(knapsack capacity cannot be exceeded) and
∑k

j=1
pij > P (at least a profit ofP can be made).

(a) Prove that the decision version of the knapsack problem can be solved in polynomial time if and only
if the optimization version of the knapsack problem can be solved in polynomial time. (10)

— Page 1 of 12 —

(b) Prove that the decision version of the knapsack problem is NP-Complete.

(Hint: You may use the partition problem which, given positive integersa1, a2, . . . , an with A =
∑n

i=1
ai,

decides whether there exists a subcollectionai1 , ai2 , . . . , aik with
∑k

j=1
aij = A/2.) (10)

2. A cut in an undirected graphG = (V,E) is a partition ofV in two (disjoint) subsetsS, T . Define by
E(S, T) the set of all edges ofG with one endpoint inS and the other inT . The MAX-CUT problem is an
optimization problem that determines a cutS, T for which the size of the setE(S, T) (the number of cross
edges) is as large as possible.

Recall that in the Ford-Fulkerson algorithm, we have dealt with minimumcuts in order to solve the dual
problem of maximizing network flow. The Ford-Fulkerson algorithm is not truly polynomial-time, but has
variants that run in polynomial time in the input size. The MAX-CUT problem (more correctly, a suitable
decision version of this problem), on the other hand, is NP-Complete (you are not asked to prove this).

Prof. Myopia proposes the following approximation algorithm for solving the MAX-CUT problem.

— Page 2 of 12 —

1. Start with an arbitrary partitionS, T of V .

2. Repeat the following two steps until no further vertex movement is possible:

(a) For each vertexv ∈ S, check whether the cut(S−v, T +v) has more cross edges than(S, T);
and if so, deletev from S and includev in T .

(b) For each vertexv ∈ T , check whether the cut(S+v, T −v) has more cross edges than(S, T);
and if so, deletev from T and includev in S.

3. ReturnS, T .

(a) Prove that Prof. Myopia’s algorithm runs in polynomial time(in the input size). (5)

(b) Prove or disprove: Prof. Myopia’s algorithm outputs the optimal solution for bipartite graphs. (5)

— Page 3 of 12 —

(c) Prove that the approximation ratio of Prof. Myopia’s algorithm is1/2. (5)

(d) Demonstrate that this approximation ratio is tight (suggest an infinite family of graphs). (5)

— Page 4 of 12 —

3. The subset-sum problem (SSP) decides whether a given collection of positive integersa1, a2, . . . , an has a
subcollection whose elements add up to a given positive integer t. We proved that SSP is an NP-Complete
problem. Recall also that an algorithm is calledpseudo-polynomial-time, if its running time is a polynomial
in the size of theunary representation of the input. We call an NP-Complete problemweakly NP-Complete
if it admits a pseudo-polynomial-time algorithm. Prove that SSP is weakly NP-Complete.

(Hint: The knapsack problem might help you. Also note that the unary size ofa1, a2, . . . , an isn+
∑n

i=1
ai.) (20)

— Page 5 of 12 —

— Page 6 of 12 —

4. Consider the problem of finding thei-th smallest element in an arrayA of n integers. Ms. Lucky proposes
the following randomized algorithm to solve this problem. She chooses a (uniformly) random elementx of
A. She then uses the partitioning algorithm of Quick Sort onA with respect to the pivotx. Suppose thatx
is placed in thek-th position after the partitioning (counting starts from1). If k = i, the algorithm returnsx.
If k > i, then a recursive call is made on the smaller subarray (of sizek − 1) and with the samei. Finally, if
k < i, then a recursive call is made on the larger subarray (of sizen − k) with i replaced byi − k. Deduce
that the expected running time of Ms. Lucky’s algorithm isO(n log n). (Notice that this running time may
depend uponi (in addition ton). In your calculations, you may suitably ignore this dependence.) (20)

— Page 7 of 12 —

5. You are given a set ofn chords in a circle. Each chord may be viewed as an opaque pieceof string. Your
task is to determine which chords are visible (fully or partially) from the center. An example is given below.
The dotted chords are the only chords that are not visible (not even partially) from the center.

— Page 8 of 12 —

(a) Propose anO((n + h) log n)-time ray-sweep algorithm for solving this problem, whereh is the total
number of intersections of the given chords. Clearly describe the events in your algorithm and how they are
handled. Assume that the chords are in general position, that is, no two of them share an endpoint, and no
three of them are concurrent. (10)

— Page 9 of 12 —

(b) Mention relevant data structures that your algorithm uses (like the organization of the event queue and
the sweep-ray information). (5)

(c) Deduce that the running time of your algorithm isO((n + h) log n). (5)

— Page 10 of 12 —

For rough work. If used for continuation of answers from Pages 1–10, supply appropriate pointers earlier.

— Page 11 of 12 —

For rough work. If used for continuation of answers from Pages 1–10, supply appropriate pointers earlier.

— Page 12 of 12 —

