
CS60003 Algorithm Design and Analysis, Autumn 2009–10

Mid-Semester Test

Maximum marks: 45 September 20, 2009 Total time: 2 hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief andprecise. Answer allquestions.]

1. Consider the following function that accepts a positive integern as input.

playWith (n)
{

while (n > 1) {
Increment n by 1.
while (n is even), set n = n/2 .

}
}

(a) Prove that the function terminates for every input integern > 1. (5)

Solution Clearly, the function terminates forn = 1. Except perhaps in the first iteration of the outerwhile loop, the loop
body starts with an odd value ofn. In the loop body, the value ofn changes to(n + 1)/2k for somek > 1. We
have(n + 1)/2k 6 (n + 1)/2 < n for all n > 1, that is, each iteration strictly reduces the value ofn.

(b) Determine a tight bound on the running time of the above function. You should supply an argument to
corroborate that your bound is tight (that is, achievable). (5)

Solution The worst case occurs when the reduction ofn (by division) occurs only once in the innerwhile loop. But for
all n > 3, we have(n + 1)/2 < (2/3)n. The first iteration may changen to n + 1 (if the initial value ofn
is even). After that, at mostlog

3/2
(n + 1) iterations of the outer loop reducen to a value6 3. For n = 3,

the outerwhile loop is executed only once (twice forn = 2, but this case does not arise unless we start with
n = 2). Since the order notation hides constant multiplicative factors, we can change the base of logarithms
from 3/2 to any other suitable constant value. Moreover, since each increment and division can be performed
in unit time, the running time ofplayWith(n) is O(log n).

This bound is tight, sinceΩ(log n) iterations are needed, for instance, forn = 2t + 1.

— Page 1 of 6 —

2. (a) Let S andT be strings each of lengthn. Your task is to determine whetherT can be obtained by
cyclically rotatingS. For example, the stringstar can be obtained by cyclically rotating the stringtars,
whereas the stringarts cannot be obtained by cyclically rotating the stringtars. Supply anO(n)-time
algorithm to solve this problem. (5)

Solution Let S = a0a1 . . . an−1. Search forT in the stringa0a1 . . . an−1a0a1 . . . an−2 of length2n − 1. Use the KMP
string matching algorithm.

(b) Let S andT be strings of lengthsm andn respectively. Your task is to determine whetherT is a
sub-sequence ofS, that is, whether the symbols ofT occur inS in the same order as they appear inT , but
not necessarily contiguously. For example, the stringgrim is a sub-sequence of the stringalgorithm, whereas
the stringgram is not. Supply anO(m + n)-time algorithm to solve this problem. (5)

Solution Initialize i = j = 0 .
while (i < m) {

If (S[i] equals T [j]) {
increment j by 1.
If (j equals n), return “success”.

}
Increment i by 1.

}
Return “failure”.

— Page 2 of 6 —

3. Consider the line-sweep algorithm for computing line-segment intersections. Suppose that some of the input
segments are allowed to be vertical (that is, parallel to they-axis). You may, however, assume that no two
given vertical segments are collinear.

(a) Define a new type of event “Vertical Segment” to deal with thissituation. Describe how you can
efficiently handle this event. You are required to maintain the running time of the original algorithm. (5)

Solution The event queueQ contains a single event for each vertical segmentLi. When this event occurs, we delete
the event fromQ. Suppose that the sweep line informationS is maintained as a height-balanced binary search
tree with top-to-bottom ordering of active segments. We locate the insertion position of the upper end point of
Li in S. From this position, we keep on looking at successors inS, until the successor lies below the bottom
end point ofLi. Let all these successors beLj1 , Lj2 , . . . , Ljr

. We report the intersection ofLi with each of
Lj1 , Lj2 , . . . , Ljr

.

(b) Prove that you achieve the original running time ofO((n+h) log n) in presence of “Vertical Segment”
events. You may assume that a height-balanced binary searchtree onk nodes can be so implemented that
the predecessor or successor of a node in the tree can be located inO(log k) time. (5)

Solution Suppose that there areh1 intersection points among non-vertical segments, and there areh2 intersection
points involving vertical segments. The effort spent to identify the formerh1 intersection points remains
O((n + h1) log n) as in the original algorithm. For a vertical segmentLi, the determination ofr intersection
points (withLj1 , Lj2 , . . . , Ljr

) takesO(r log n) time, since the size ofS is always6 n. So the total effort
associated with handling all “Vertical Segment” events isO(h2 log n). Consequently, the total running time is
O((n + h1 + h2) log n), that is,O((n + h) log n).

— Page 3 of 6 —

4. You are given a set ofn real numbersx1, x2, . . . , xn. Your task is to cover these points by intervals of unit
length (that is, by intervals of the form[a, a + 1] = {x ∈ R | a 6 x 6 a + 1} for real numbersa). Your
goal is to minimize the number of intervals in the cover. (Here is a practical application of this problem.
Suppose that the pointsxi represent houses on a straight road. You want to cover all thehouses by a set of
cellular-phone towers each with a maximum range of1/2 km in each direction. Naturally, you attempt to
serve all the houses with as few towers as possible.)

(a) Consider the following greedy strategy. Choose an intervalof unit length to cover the maximum number
of points in the given collection. Output this interval, andremove the points covered by this interval from
the collection. (Serve the maximum possible number of houses by a single tower.) Repeat until no points
are left. Give an example to demonstrate that this greedy algorithm may fail to provide an optimal solution.(5)

Solution Consider the points−1,−0.5,−0.1, 0.1, 0.5, 1. It is easy to see that no unit interval covers five or more of these
points. The greedy strategy first chooses the interval[−0.5, 0.5] to cover the most congested part (that is, the
four central points). This is indeed the only unit interval which contains four of the six given points. But then
two other intervals are needed, one to cover−1, and the other to cover1. That leads to a collection of three
intervals.

On the contrary, only two intervals[−1, 0] and[0, 1] suffice to cover all of the given six points.

(b) Although the greedy strategy of Part (a) fails, there exist other greedy strategies that efficiently compute
optimal solutions. Describe such a strategy. The running time of your greedy algorithm must be bounded
by a polynomial inn. (5)

Solution First, sort the input points in increasing order. This takesO(n log n) time. Suppose that the sorted sequence is
x1, x2, . . . , xn itself.

Let xi be the leftmost point yet to be covered (initially,i = 1). Output the interval[xi, xi + 1], and remove all
the points that lie in the interval. Repeat until no points are left.

The algorithm can be implemented to run inO(n) time (after the initial sorting phase, of course).

— Page 4 of 6 —

(c) Prove that your greedy algorithm correctly computes an optimal solution. (5)

Solution Suppose that an optimal solution is provided to us. Assume that x1 6 x2 6 · · · 6 xn. There exists (at least)
one intervalI1 in the optimal solution, that coversx1. TakeI ′

1
= [x1, x1 + 1]. Clearly,I ′

1
covers no fewer

points thanI1.

Suppose thatxi is the leftmost point not covered byI ′
1
. In the optimal solution, (at least) one intervalI2 covers

xi. We must haveI2 6= I1, since otherwiseI ′
1

would have coveredxi. TakeI ′
2

= [xi, xi + 1]. Clearly,I ′
1
∪ I ′

2

covers no fewer points thanI1 ∪ I2.

Proceeding in this fashion, we can convert the optimal solution to a greedy solution without ever increasing the
number of intervals. Since the original collection of intervals was optimal, the converted greedy collection must
be optimal too (and must contain the same number of intervalsas the original optimal collection.)

— Page 5 of 6 —

ROUGH WORK

— Page 6 of 6 —

