CS60003 Algorithm Design and Analysis, Autumn 2009-10

Mid-Semester Test

Maximum marks: 45 September 20, 2009 Total time: 2 hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief pratise. Answer alfjuestions,

1. Consider the following function that accepts a positivegdrn as input.
playWith (n)

while (n > 1) {
Increment n by 1.
while (n is even), setn =n/2.

(@) Prove that the function terminates for every input integes 1. (5)

Solution Clearly, the function terminates far= 1. Except perhaps in the first iteration of the outdnile loop, the loop
body starts with an odd value of In the loop body, the value of changes tgn + 1) /2* for somek > 1. We
have(n + 1)/2F < (n+1)/2 < nforall n > 1, that is, each iteration strictly reduces the value.of

(b) Determine a tight bound on the running time of the above fonctYou should supply an argument to
corroborate that your bound is tight (that is, achievable). (5)

Solution The worst case occurs when the reductiom @by division) occurs only once in the innehile loop. But for
all n > 3, we have(n + 1)/2 < (2/3)n. The first iteration may changeto n + 1 (if the initial value ofn
is even). After that, at mosbgs »(n + 1) iterations of the outer loop reduceto a value< 3. Forn = 3,
the outewhile loop is executed only once (twice far = 2, but this case does not arise unless we start with
n = 2). Since the order notation hides constant multiplicatagtdrs, we can change the base of logarithms
from 3/2 to any other suitable constant value. Moreover, since aameinent and division can be performed
in unit time, the running time gblayWith(n) is O (log n).

This bound is tight, sinc(log n) iterations are needed, for instance, foe 2¢ + 1.

— Page 1 of 6 —

. (&) LetS andT be strings each of length. Your task is to determine wheth&t can be obtained by
cyclically rotating.S. For example, the stringtar can be obtained by cyclically rotating the stritegs,
whereas the stringrts cannot be obtained by cyclically rotating the stritags. Supply anQ(n)-time

algorithm to solve this problem.

(®)

Solution LetS = agay ...a,_1. Search fofl" in the stringaga; . ..a,_1apa;1 . . .a,_o Of length2n — 1. Use the KMP
string matching algorithm.

(b) Let S andT be strings of lengthsn andn respectively. Your task is to determine whetiéis a
sub-sequence &, that is, whether the symbols @foccur inS in the same order as they appeaflinbut
not necessarily contiguously. For example, the stgng is a sub-sequence of the strialgorithm, whereas

the stringgram is not. Supply arD(m + n)-time algorithm to solve this problem.

(®)

Solution Initialize i = j = 0.
while (i < m) {
If (S[i] equals T[5]) {
increment j by 1.
If (j equals n), return “success”.

}

Increment 4 by 1.

}

Return “failure”.

— Page 2 of 6 —

3. Consider the line-sweep algorithm for computing line-segtntersections. Suppose that some of the input
segments are allowed to be vertical (that is, parallel tojtais). You may, however, assume that no two
given vertical segments are collinear.

(a) Define a new type of event “Vertical Segment” to deal with thitwation. Describe how you can
efficiently handle this event. You are required to maintaim tunning time of the original algorithm. (5)

Solution The event queué) contains a single event for each vertical segment When this event occurs, we delete
the event from). Suppose that the sweep line informati®is maintained as a height-balanced binary search
tree with top-to-bottom ordering of active segments. Weatedhe insertion position of the upper end point of
L; in S. From this position, we keep on looking at successorS,iantil the successor lies below the bottom
end point ofL;. Let all these successors bg,, L;,, ..., L;.. We report the intersection df; with each of
Lj,Liy, ..., Lj,.

(b) Prove that you achieve the original running time3(f(n + 1) log n) in presence of “Vertical Segment”
events. You may assume that a height-balanced binary staechbnk nodes can be so implemented that
the predecessor or successor of a node in the tree can bedanai(log k) time. (5)

Solution Suppose that there are, intersection points among non-vertical segments, ancethee h, intersection
points involving vertical segments. The effort spent tonidfy the formerh, intersection points remains
O((n + h1)logn) as in the original algorithm. For a vertical segmént the determination of intersection
points (withL;,, L;,, ..., L;,) takesO(rlogn) time, since the size of is always< n. So the total effort
associated with handling all “Vertical Segment” event§){g.» logn). Consequently, the total running time is
O((n + h1 + ha)logn), thatis,0((n + h) logn).

— Page 30f 6 —

4. You are given a set ot real numbersey, xo, ..., z,. Your task is to cover these points by intervals of unit
length (that is, by intervals of the forfa,a + 1] = {x € R | a < = < a + 1} for real numbers:). Your
goal is to minimize the number of intervals in the cover. (#&ra practical application of this problem.
Suppose that the poinis represent houses on a straight road. You want to cover alidhses by a set of
cellular-phone towers each with a maximum rangéd 6f km in each direction. Naturally, you attempt to
serve all the houses with as few towers as possible.)

(a) Consider the following greedy strategy. Choose an intafahit length to cover the maximum number
of points in the given collection. Output this interval, ammnove the points covered by this interval from
the collection. (Serve the maximum possible nhumber of holbsea single tower.) Repeat until no points
are left. Give an example to demonstrate that this greedyrigtign may fail to provide an optimal solutior(5)

Solution Consider the points-1, —0.5, —0.1,0.1, 0.5, 1. It is easy to see that no unitinterval covers five or more e$éh
points. The greedy strategy first chooses the interv@l5, 0.5] to cover the most congested part (that is, the
four central points). This is indeed the only unit intervdliah contains four of the six given points. But then
two other intervals are needed, one to covdr, and the other to cover. That leads to a collection of three
intervals.

On the contrary, only two intervals-1, 0] and[0, 1] suffice to cover all of the given six points.

(b) Although the greedy strategy of Part (a) fails, there exiseogreedy strategies that efficiently compute
optimal solutions. Describe such a strategy. The runnimg tof your greedy algorithm must be bounded
by a polynomial inn. (5)

Solution First, sort the input points in increasing order. This taRes logn) time. Suppose that the sorted sequence is
T1,%2, ..., Ty itself.

Let z; be the leftmost point yet to be covered (initially= 1). Output the intervalz;, z; + 1], and remove all
the points that lie in the interval. Repeat until no points left.

The algorithm can be implemented to run(ixir) time (after the initial sorting phase, of course).

— Page 4 0of 6 —

(c) Prove that your greedy algorithm correctly computes amaegitisolution. (5)

Solution Suppose that an optimal solution is provided to us. Assumerth<< z» < --- < z,. There exists (at least)
one intervall; in the optimal solution, that covers. Takel; = [x1,z1 + 1]. Clearly, I] covers no fewer
points thanf; .

Suppose that; is the leftmost point not covered Hy. In the optimal solution, (at least) one intenalcovers
x;. We must havd, # I, since otherwisd| would have covered;. Takel} = [z;, z; + 1]. Clearly,I] U I}
covers no fewer points thah U I5.

Proceeding in this fashion, we can convert the optimal smiub a greedy solution without ever increasing the
number of intervals. Since the original collection of in&ls was optimal, the converted greedy collection must
be optimal too (and must contain the same number of inteasathe original optimal collection.)

— Page50f6 —

ROUGH WORK

— Page 6 of 6 —

