
CS60003 Algorithm Design and Analysis, Autumn 2009–10

End-Semester Test

Maximum marks: 50 November 24, 2009 Total time: 3 hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief andprecise. Answer allquestions.]

Guided Thinking Section

In this section, I guide you to arrive at solutions to some computational exercises.
Proceed exactly as I tell you to. Just fill out the missing details.

1. Let S be a finite set, andS1, S2, . . . , Sk a collection of subsets ofS. A subcollectionSi1, Si2 , . . . , Sil with

1 6 i1 < i2 < · · · < il 6 k is called acoverof S if S =
l⋃

j=1

Sij . In this case,l (the number of subsets

in the cover) is called thesizeof the cover. The decision problemSET-COVER takes as input a setS, a
collectionS1, S2, . . . , Sk of subsets ofS, and a positive integerl, and decides whetherS has a cover (in the
given subsets) of size exactlyl. In this exercise, we prove thatSET-COVER is anNP-Complete problem.
You may assume any standard representation of sets (such as sorted/unsorted arrays, linked lists, or trees).

(a) What is the output ofSET-COVER for the following input? S = {1, 2, 3, 4, 5, 6, 7, 8, 9} with five
subsetsS1 = {2, 3, 5, 7}, S2 = {1, 2, 3, 5, 8}, S3 = {1, 2, 4, 8}, S4 = {3, 6, 9}, andS5 = {4, 6, 8, 9}, and
l = 2. No (1)

(b) Show thatSET-COVER ∈ NP. For an instance〈S, (S1, S2, . . . , Sk), l〉 in Accept(SET-COVER), a
certificate is: (2)

l distinct indicesi1, i2, . . . , il

This certificate can be verified in polynomial time as: (2)

check whetherS =
l⋃

j=1

Sij

(c) In order to prove the NP-hardness ofSET-COVER, reduceVERTEX-COVER to SET-COVER.
Let 〈G, t〉 be an input forVERTEX-COVER, whereG = (V,E) is an undirected graph withn = |V |
vertices ande = |E| edges. The reduction algorithm produces an instance〈S, (S1, S2, . . . , Sk), l〉 for
SET-COVER, where: (4)

S = E

k = n

Si = The set of edges incident upon the vertexvi

l = t

Remark: Your reduction must fulfill the following requirement:S has a set cover of sizel if and only if G
has a vertex cover of sizet.

— Page 1 of 8 —

2. Dijkstra’s single-source-shortest-path algorithm is applied to the following graph with sourcea.

a b

c d

e f

9 2

1
7

8 6

1

4

3

5

5

8

(a) Let us use the notations given in the notes. Fill out the following table to demonstrate how the partition
P,Q and the arraysD andprev change in different iterations of Dijkstra’s algorithm. Assume that these
arrays are indexed bya, b, c, d, e, f from left to right. (6)

Iteration P Q D prev

Init {a} {b, c, d, e, f} 0 1 2 ∞ 8 9 a a a a a a

1 {a, b} {c, d, e, f} 0 1 2 ∞ 8 7 a a a a a b

2 {a, b, c} {d, e, f} 0 1 2 5 7 7 a a a c c b

3 {a, b, c, d} {e, f} 0 1 2 5 7 6 a a a c c d

4 {a, b, c, d, f} {e} 0 1 2 5 7 6 a a a c c d

5 {a, b, c, d, e, f} ∅ 0 1 2 5 7 6 a a a c c d

(b) Using theprev array, trace the shortest path froma to f . (2)

prev(f) = d, prev(d) = c, andprev(c) = a. So the shortesta, f path isa-c-d-f .

— Page 2 of 8 —

3. Consider the following non-deterministic algorithm for the CLIQUE problem. LetG = (V,E) be an
undirected graph withn vertices numbered as1, 2, 3, . . . , n. We are required to find out whetherG contains
a clique of sizet. We non-deterministically chooset verticesv1, v2, . . . , vt. In order to avoid repetitions, we
choose the vertices in increasing order, that is, satisfying 1 6 v1 < v2 < · · · < vt 6 n.

(a) The following figure shows an incomplete non-deterministiccomputation tree for a graphG on 5
vertices and fort = 3. Complete the drawing. That is, draw the complete tree with each node labeled by
appropriate non-deterministic choices and with leaf nodesmarked additionally by Yes/No decisions. (4)

1

2 3 4

5

G

2 3

φ

1

1,41,31,2 2,3 2,4 3,4

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,5 2,4,5 3,4,5

NoNo No No No No No

2,3,4

Yes No Yes

(b) Suppose that a backtracking algorithm is carried out on a computation tree for the above algorithm for
CLIQUE. Describe a pruning strategy to identify appropriate intermediate nodes as dead ends. (2)

A nodev1, v2, . . . , vi of vertices not forming ani-clique. These vertices cannot belong to a bigger clique.

(c) Mark/state which non-leaf nodes in the tree of Part (a) are dead ends (for your pruning strategy). (2)

The nodes1, 3 and2, 4

— Page 3 of 8 —

Independent Thinking Section

In this section, I supply you no guidelines.
You yourself are required to arrive at solutions to some computational exercises.

4. Let P1, P2, . . . , Pn be n points in the plane in general position. Denote bymij the slope of the segment
PiPj. Supply anO(n log n)-time algorithm for identifying the pair of pointsPi, Pj for which |mi,j| is
maximum. (In this case,PiPj is the steepest among all the line segments connecting the given points.) (5)

Solution Sort the points in increasing order ofx-coordinates. The steepest segment must belong to two consecutive
points in the sorted list, as the following figure demonstrates.

(a) (b) (c) (d)

The dashed segments are steeper than the solid segments

Sorting the points requiresO(n log n) time. Computingn − 1 slopes between consecutive points and finding
the maximum of the absolute values of these slopes can be donein O(n) time.

5. Let IS-HAM-CYCLE denote the computational problem that, given an undirectedgraphG, decides whether
G contains just those edges necessary to form a Hamiltonian cycle in G (no more, no less). Prove or
disprove:IS-HAM-CYCLE is NP-Complete. (5)

Solution A graph G on n vertices is ann-cycle if and only if G is connected with each vertex having degree2.
Connectedness of a graph can be checked in polynomial time. Also, it is straightforward to check whether
each vertex in a graph has degree2. It follows thatIS-HAM-CYCLE is in P and so cannot beNP-Complete
unlessP = NP.

— Page 4 of 8 —

6. Consider the optimization version of the set covering problem of Exercise 1. That is, given a finite setS and
a collection ofk subsetsS1, S2, . . . , Sk of S, we intend to find out a cover ofS (from the given collection)
of size as small as possible. Let us denote this optimizationproblem byMIN-SET-COVER.

(a) For instance, takeS = {1, 2, 3, 4, 5, 6, 7, 8, 9} with five subsetsS1 = {2, 3, 5, 7}, S2 = {1, 2, 3, 5, 8},
S3 = {1, 2, 4, 8}, S4 = {3, 6, 9}, andS5 = {4, 6, 8, 9}. What is an output ofMIN-SET-COVER on this
input? (2)

Solution Since allSi are proper subsets ofS, we cannot have a cover of size1. It is also easy to check that no two of the
given subsets have a union equal toS. However,S1 ∪ S3 ∪ S5 = S, so an output forMIN-SET-COVER can
be the smallest count3 along with the explicit coverS1, S3, S5.

Let S = {x1, x2, . . . , xn} be of sizen, and letfi be the count of the subsetsSj containing the element
xi. Finally, letf = max(f1, f2, . . . , fn). (The countsfi are the frequencies of the elements, andf is the
maximum frequency.)

(b) Design a polynomial-timef -approximation algorithm forMIN-SET-COVER. (6)

Solution TheMIN-SET-COVER problem is a generalization of theMIN-VERTEX-COVER problem. We can adapt
the2-approximation algorithm forMIN-VERTEX-COVER to work for set covers as follows. The algorithm
assumes that all points inS are covered by at least one of the given subsets. It is easy to check whether this
condition is satisfied for the given input, and if not, we return failure without running the following algorithm.

Initialize U = ∅, and C = {S1, S2, . . . , Sk}.

while (S 6= ∅) {

Choose any x ∈ S. /* An yet uncovered member of S */

Add to U all the subsets Si ∈ C containing x.

Remove from S all the points covered by all these subsets.

Finally, remove these subsets from C.

}

Return U.

— Page 5 of 8 —

(c) Prove that your algorithm achieves an approximation ratio of f . (6)

Solution Extend the notion of matching to the case of set covers. A subsetT ⊆ S is called a matching (with respect to
the given collectionS1, S2, . . . , Sk) if no two members ofT belong to a common subsetSi. The elementsx
chosen in all the iterations of thewhile loop constitute a matching ofS, since all the elements sharing subsets
with a choice ofx are removed (covered) before a next choice ofx is made.

Since a matching contains a set ofindependentelements (each requiring its own subset for getting covered),
the size of any matching ofS is no larger than the size of any cover ofS. If we apply this observation to the
matchingT computed by the algorithm and to an optimal coverU∗, we get

|T | 6 |U∗|.

On the other hand, each choice ofx in thewhile loop adds at mostf subsets to the coverU , since this is the
maximum frequency of an element. Therefore, the computed coverU satisfies

|U | 6 f × |T |.

Combining these two inequalities gives an approximation ratio of f :

|U | 6 f × |T | 6 f × |U∗|, that is,|U |/|U∗| 6 f.

(d) Prove or disprove: The approximation ratiof achieved by your algorithm is tight. (6)

Solution The approximation factorf is tight. To demonstrate this, take a valuef = 2r, and letS containr + 1 elements
x0, x1, x2, . . . , xr. We start with the collection of all subsets ofS containingx0 (sok = 2r). The frequency of
x0 is 2r = f , whereas, for1 6 i 6 r, the frequency ofxi is 2r−1 = f/2. Thus, the maximum frequency isf .

Suppose that the approximation algorithm choosesx0 as the first uncovered element. Sincex0 belongs to every
subset in the given collection, the algorithm adds all thesesubsets toU . This also covers all the members ofS,
and the algorithm stops. We thus get|U | = 2r = f .

On the other hand,|U∗| = 1, since the given collection of subsets ofS contains the entire setS itself.

Clue: f = 2 for theMIN-VERTEX-COVER problem.

— Page 6 of 8 —

ROUGH WORK

— Page 7 of 8 —

ROUGH WORK

— Page 8 of 8 —

