CS60003 Algorithm Design and Analysis, Autumn 2009-10
End-Semester Test

Maximum marks: 50 November 24, 2009 Total time: 3 hours

Roll no: Name:

[ Write your answers in the question paper itself. Be brief pratise. Answer alfjuestions,
Guided Thinking Section|

In this section, | guide you to arrive at solutions to some potational exercises.
Proceed exactly as | tell you to. Just fill out the missing itieta

. Let S be afinite set, and, Ss, ..., S;, a collection of subsets &f. A subcollectionS;,, S;,, ..., S; with

!
1<i <ig <--- <14 < kiscalled acoverof S'if § = U Si;. In this case/ (the number of subsets

j=1
in the cover) is called theizeof the cover. The decision probleRET-COVER takes as input a s&t, a
collection Sy, S, . .., Sk of subsets of, and a positive integer and decides whethéf has a cover (in the

given subsets) of size exactlyln this exercise, we prove thaET-COVER is anNP-Complete problem.
You may assume any standard representation of sets (suoht@d/snsorted arrays, linked lists, or trees).

(@) What is the output oBET-COVER for the following input? S = {1,2,3,4,5,6,7,8,9} with five
subsetsS; = {2,3,5,7}, So = {1,2,3,5,8}, S5 = {1,2,4,8}, Sy = {3,6,9}, andSs = {4,6,8,9}, and
1=2. 1)

(b) Show thatSET-COVER € NP. For an instancés, (S1, 52, ..., Sk),[) in Accept(SET-COVER), a
certificate is: 2)

[ distinct indicesiy, ia, . . . , i ‘

This certificate can be verified in polynomial time as: 2)

!
check whethess = | ] S,
j=1

(c) In order to prove the NP-hardness ®ET-COVER, reduceVERTEX-COVER to SET-COVER.
Let (G,t) be an input forVERTEX-COVER, whereG = (V| E) is an undirected graph with = |V/|
vertices ande = |E| edges. The reduction algorithm produces an instai$t€sS,, Ss, ..., Sk),[) for

SET-COVER, where: (4)
S=FE

k= n

S; = The set of edges incident upon the vertex

I =t

Remark: Your reduction must fulfill the following requiremeng has a set cover of sizdf and only if G
has a vertex cover of size
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2. Dijkstra’s single-source-shortest-path algorithm isleggpto the following graph with source.

(@) Letus use the notations given in the notes. Fill out the Yalhg table to demonstrate how the partition
P, and the array® andpr ev change in different iterations of Dijkstra’s algorithm. #sne that these

arrays are indexed hy, b, ¢, d, e, f from left to right.

Iteration P Q D prev
Init {a} {b,e,d,e, f} [|0]1[2]c0|8]9 alalal|lalala
1 {a,b} {c,d,e, [} 0[1]2]|cc|8]|7 alalalalalb
2 {a,b,c} {d,e, f} of1f2f5 (7|7 ala|lalc|lc|b
3 {a,b,c,d} {e,f} 0l1]12]|5]|7]6 alalalclcl|d
4 {a,b,c,d, f} {e} O(1f25[7]6 alal|lalc|le]|d
5 {a,b,c,d,e, f} 0 o|1|2|5(|7]6 alalalcl|lc|d

(b) Using thepr ev array, trace the shortest path franto f.

‘ prev(f)=d, prev(d) = c, andprev(c) = a. So the shortest, f path iSa—c—d—f.‘
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3. Consider the following non-deterministic algorithm foret LIQUE problem. LetG = (V, FE) be an
undirected graph with vertices numbered ds 2, 3, . .. , n. We are required to find out wheth€frcontains
a clique of siz¢. We non-deterministically choosererticesv;, vs, . . ., v;. In order to avoid repetitions, we
choose the vertices in increasing order, that is, satigf¥irt v1 < ve < -+ < v < n.

(&) The following figure shows an incomplete non-deterministiznputation tree for a grapty on 5
vertices and fot = 3. Complete the drawing. That is, draw the complete tree waithenode labeled by
appropriate non-deterministic choices and with leaf nodasked additionally by Yes/No decisions. (4)

)
1 2 3
1,2 1,3 1,4 2,3 2,4 3,4
1,2,3 1,2,4 1,25 1,3,4 1,3,5 1,45 2,3,4 2,3|5 2,45 34!
No No No No No No No Yes No Yes

(b) Suppose that a backtracking algorithm is carried out on gocation tree for the above algorithm for
CLIQUE. Describe a pruning strategy to identify appropriate imeediate nodes as dead ends. 2)

‘A nodewy, v, . .., v; Of vertices not forming an-clique. These vertices cannot belong to a bigger clihue.

(c) Mark/state which non-leaf nodes in the tree of Part (a) aseldads (for your pruning strategy).  (2)

The nodes, 3 and2, 4|
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Independent Thinking Section‘

In this section, | supply you no guidelines.
You yourself are required to arrive at solutions to some cataiional exercises.

4. Let P, P, ..., P, ben points in the plane in general position. Denotery; the slope of the segment
P;P;. Supply anQ(nlogn)-time algorithm for identifying the pair of point®;, P; for which |m; ;| is
maximum. (In this case?; P; is the steepest among all the line segments connecting\wbe goints.) 5)

Solution Sort the points in increasing order ofcoordinates. The steepest segment must belong to two aoihse
points in the sorted list, as the following figure demonstsat

o S
(a) (b) (© (d)

The dashed segments are steeper than the solid segmer

Sorting the points required(n logn) time. Computing: — 1 slopes between consecutive points and finding
the maximum of the absolute values of these slopes can beidoy(e) time.

5. LetIS-HAM-CYCLE denote the computational problem that, given an undiregtaph, decides whether
G contains just those edges necessary to form a Hamiltoniale ay G (no more, no less). Prove or
disprove:IS-HAM-CYCLE is NP-Complete. (5)

Solution A graph G on n vertices is ann-cycle if and only if G is connected with each vertex having degtee
Connectedness of a graph can be checked in polynomial tintgo, A is straightforward to check whether
each vertex in a graph has deggeédt follows thatIS-HAM-CYCLE is in P and so cannot b¥P-Complete
unlessP = NP.
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6. Consider the optimization version of the set covering peobbf Exercise 1. That is, given a finite seand
a collection ofk subsetsSy, S, ..., S; of S, we intend to find out a cover ¢f (from the given collection)
of size as small as possible. Let us denote this optimizgioblem byMIN-SET-COVER.

(@) Forinstance, také = {1,2,3,4,5,6,7,8,9} with five subsetsS; = {2,3,5,7}, So = {1,2,3,5,8},
S3 ={1,2,4,8}, Sy = {3,6,9}, andS; = {4,6,8,9}. What is an output oMIN-SET-COVER on this
input? 2)

Solution Since allS; are proper subsets 6f, we cannot have a cover of sizelt is also easy to check that no two of the
given subsets have a union equabtoHowever,S; U S3 U S5 = S, so an output foMIN-SET-COVER can
be the smallest coustalong with the explicit covef, Ss, Ss.

Let S = {x1,29,...,2,} be of sizen, and letf; be the count of the subsef§ containing the element
x;. Finally, let f = max(fi, f2,..., fn). (The countsf; are the frequencies of the elements, ghid the
maximum frequency.)

(b) Design a polynomial-timg-approximation algorithm foMIN-SET-COVER. (6)

Solution The MIN-SET-COVER problem is a generalization of tAdIN-VERTEX-COVER problem. We can adapt
the 2-approximation algorithm foMIN-VERTEX-COVER to work for set covers as follows. The algorithm
assumes that all points ifi are covered by at least one of the given subsets. It is eadyettkavhether this
condition is satisfied for the given input, and if not, we retfailure without running the following algorithm.

Initialize U=0, and C = {S1,52,...,S5k}
while (S#0) {
Choose any z€S. /* An yet uncovered nenber of S =/
Add to U all the subsets S; € C containing =z.
Rermove from S all the points covered by all these subsets.
Finally, renove these subsets fromC.

}
Return U.
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(c) Prove that your algorithm achieves an approximation rati@.o (6)

Solution Extend the notion of matching to the case of set covers. Aetibs S is called a matching (with respect to
the given collectionSy, Ss, ..., Sk) if no two members ofl” belong to a common subsg&t. The elements:
chosen in all the iterations of théhi | e loop constitute a matching ¢, since all the elements sharing subsets
with a choice ofr are removed (covered) before a next choice &f made.

Since a matching contains a setinflependenelements (each requiring its own subset for getting covyered
the size of any matching & is no larger than the size of any cover.®f If we apply this observation to the
matchingl’ computed by the algorithm and to an optimal colér we get

IT| < [U7.

On the other hand, each choicexoin thewhi | e loop adds at mosf subsets to the covér, since this is the
maximum frequency of an element. Therefore, the computedrdo satisfies

Ul < fx|T]
Combining these two inequalities gives an approximatioio iaf

U| < fx|T| < fx|U"|, thatis,|U|/|U*| < f.

(d) Prove or disprove: The approximation raffaachieved by your algorithm is tight. (6)

Solution The approximation factof is tight. To demonstrate this, take a valfie= 2", and letS containr + 1 elements
Zo,T1, T2, - . ., Ty We start with the collection of all subsets ®icontainingzy (sok = 2"). The frequency of
1o is2" = f, whereas, foil < i < r, the frequency of; is2"~! = f/2. Thus, the maximum frequency fs

Suppose that the approximation algorithm choasgeass the first uncovered element. Singebelongs to every
subset in the given collection, the algorithm adds all theedesets td/. This also covers all the members.f
and the algorithm stops. We thus ¢&t = 2" = f.

On the other hand{V*| = 1, since the given collection of subsets$tontains the entire sétitself.

Clue: f = 2 for the MIN-VERTEX-COVER problem.
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ROUGH WORK
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ROUGH WORK
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