
CS60003 Algorithm Design and Analysis, Autumn 2009–10

Class test 1

Maximum marks: 30 September 08, 2009 Total time: 1 hour

Roll no: Name:

[Write your answers in the question paper itself. Be brief andprecise. Answer allquestions.]

1. Suggest how you can force the quick sort algorithm to run inO(n log n) time in the worst case. (5)

Solution Use the linear-time selection algorithm to compute the median of the array. Use this median as the pivot to
partition the array. This forces both the smaller and the larger subarrays of the partition to contain (almost) half
of the elements of the original array, and the algorithm exhibits its best-case performance.

2. An arrayA = [a1, a2, . . . , an] is called2-sorted if the array[a1 + a2, a2 + a3, a3 + a4, . . . , an−1 + an] is
sorted.

(a) Give an example of an array of10 integers, that is2-sorted, but not sorted. (5)

1 6 2 7 3 8 4 9 5 10

(b) Use a reduction argument to prove that any comparison-basedalgorithm for2-sorting an array ofn
elements must takeΩ(n log n) time in the worst case. (5)

Solution Reduce SORTING to 2-SORTING as follows. LetA be an array ofn elements, that we want to sort. FeedA
to an algorithm for 2-SORTING. Let the output bea1, a2, . . . , an. Since this is a 2-sorted listing, we must have
a1 6 a3 6 a5 6 · · · anda2 6 a4 6 a6 6 · · · , that is, the odd-indexed elements form a sorted sequence of
size⌈n/2⌉, and the even-indexed elements form a sorted sequence of size ⌊n/2⌋. Merge these two sorted lists
into a single sorted array. This reduction can be done inO(n) (that is,o(n log n)) time.

— Page 1 of 4 —

3. A game is played between you and the computer. The game startswith a row of coins of valuesc1, c2, . . . , cn.
All the valuesci are known to you since the beginning of the game. The moves alternate between you and
the computer. You make the first move. The player making a moveis required to take a coin from one of
the two ends. You are provided with an added option of skipping your move, but at most once in the entire
game. (Your opponent does not have this option.) Your profit is the total value of all the coins you collect.
The following steps lead to a polynomial-time dynamic-programming algorithm to compute your maximum
guaranteed profit (that is, the maximum amount of money that you can definitely win).

(a) Suppose that at some point of time, the coins left areci, ci+1, . . . , cj , and it is your turn to make a move.
Let P1(i, j) denote your maximum guaranteed profit from this point (untilthe end of the game), given that
you have already used the option of skipping a move. In this case, you have to pick eitherci or cj . On the
other hand, suppose that you have not already exercised youroption of skipping a move, that is, you may
now pick eitherci or cj or none of them. LetP2(i, j) be your maximum guaranteed profit from this point.
Express these profits in terms of your profits for(i, j − 1), (i, j − 2), (i + 1, j), (i + 1, j − 1) and(i + 2, j).
Notice that your opponent does not cooperate with you in order to maximize your profit. In other words,
although you make moves to maximize your profit, you do not have any control over the moves of your
opponent. (4)

P1(i, j) =

max

[

ci + min
(

P1(i + 1, j − 1), P1(i + 2, j)
)

,

cj + min
(

P1(i, j − 2), P1(i + 1, j − 1)
)

]

P2(i, j) =

max

[

ci + min
(

P2(i + 1, j − 1), P2(i + 2, j)
)

,

cj + min
(

P2(i, j − 2), P2(i + 1, j − 1)
)

,

min
(

P1(i, j − 1), P1(i + 1, j)
)

]

(b) Describe how you can initialize the profit values. (4)

For eachi = 1, 2, . . . , n, initialize:

P1(i, i) = ci P2(i, i) = ci

Also for eachi = 1, 2, . . . , n − 1, initialize:

P1(i, i + 1) = max(ci, ci+1) P2(i, i + 1) = max(ci, ci+1)

(c) What is the final value you like to compute? P2(1, n) (2)

— Page 2 of 4 —

(d) Describe an iterative algorithm to compute the final value from the initial values. (3)

Solution Use two two-dimensional arrays, one for storingP1(i, j) and the other for storingP2(i, j). Initialize the array
locationsP1[i, i], P2[i, i], P1[i, i + 1], andP2[i, i + 1], as in Part (b). Subsequently, do the following:

for k = 2, 3, 4, . . . , n − 1 {
for i = 1, 2, . . . , n − k {

Setj = i + k.
ComputeP1[i, j] andP2[i, j] using the formulas of Part (a).

}
}
ReturnP2[1, n].

(e) Analyze the running time of your algorithm. (2)

Solution The total number of iterations of the inner loop body is(n−2)+(n−3)+ · · ·+1 = (n−1)(n−2)/2 = Θ(n2)
with each iteration taking only a constant amount of time. The initialization step takesΘ(n) time. So the
running time of the above algorithm isΘ(n2).

— Page 3 of 4 —

ROUGH WORK

— Page 4 of 4 —

