(10)

4

2

Maximum marks: 50 September 26, 2008 Total time: 2 hours

1. Suppose that the running time T(n) of an algorithm on an input of size n satisfies

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + cn \log n$$

for all $n \ge 2$, where c is a positive constant. Deduce that $T(n) = \Theta(n \log^2 n)$.

Solution Step 1: First show, by induction on n, that T(n) is an increasing function of n. This implies that $T(2^t) \le T(n) \le T(2^{t+1})$, where $2^t \le n < 2^{t+1}$.

Step 2: Solve the recurrence for $n = 2^t$.

$$\begin{array}{ll} T(2^t) & = & 2T(2^{t-1}) + c't2^t & \text{(where } c' = c\log 2 > 0 \text{ is a constant)} \\ & = & 2[2T(2^{t-2}) + c'(t-1)2^{t-1}] + c't2^t \\ & = & 2^2T(2^{t-2}) + c'[(t-1) + t]2^t \\ & = & 2^2[2T(2^{t-3}) + c'(t-2)2^{t-2}] + c'[(t-1) + t]2^t \\ & = & 2^3T(2^{t-3}) + c'[(t-2) + (t-1) + t]2^t \\ & \cdots \\ & = & 2^tT(1) + c'[1 + 2 + \cdots + (t-2) + (t-1) + t]2^t \\ & = & d2^t + c't(t+1)2^{t-1} & \text{(where } d = T(1) \text{ is a positive constant)} \\ & = & (c't^2 + c't + 2d)2^{t-1}. \end{array}$$

Step 3: Upper bound

Consider n in the range $2^t \le n < 2^{t+1}$. We have

$$T(n) \leqslant T(2^{t+1}) = (c'(t+1)^2 + c'(t+1) + 2d)2^t \leqslant (c'(\lg n + 1)^2 + c'(\lg n + 1) + 2d)n.$$

It follows that $T(n) = O(n \log^2 n)$.

Step 4: Lower bound

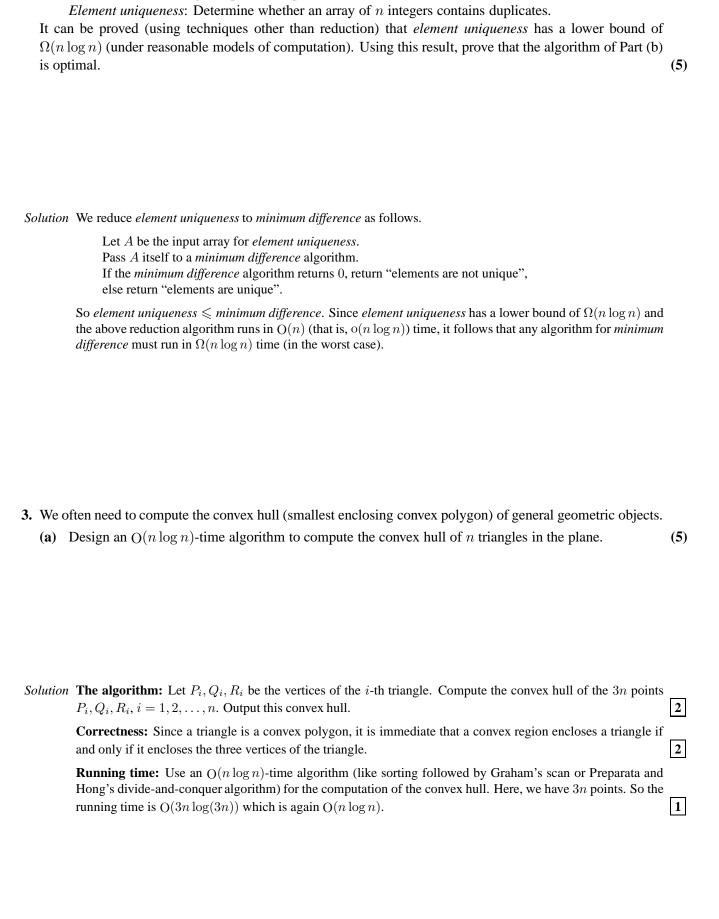
For n satisfying $2^t \leqslant n < 2^{t+1}$, we have

$$T(n) \geqslant T(2^t) = (c't^2 + c't + 2d)2^{t-1} \geqslant (c'(\lg n - 1)^2 + c'(\lg n - 1) + 2d)\frac{n}{4}.$$

Therefore, $T(n) = \Omega(n \log^2 n)$.

deter	rmining M (resp. m) is called the maximum-difference (resp. minimum-difference) problem.	
(a)	Design an $O(n)$ -time algorithm to compute M .	(5)
Solution	The algorithm:	3
	First, obtain the minimum element a_s in the array. Then, obtain the maximum element a_t in the array.	
	Finally, return $a_t - a_s$.	
	Correctness: Assume $a_i \geqslant a_j$. Then, $ a_i - a_j = a_i - a_j$ is maximized, when a_i is as large as possible and a_j	
	is as small as possible.	1
	Running time: The minimum of an array of n elements can be found in $O(n)$ time. Similar is the case for the maximum.	1
(b)	Design an $O(n \log n)$ -time algorithm to compute m .	(5)
Solution	The algorithm:	3
	Merge sort the array A in ascending order.	
	Let $a_{i_1}, a_{i_2}, \ldots, a_{i_n}$ be the sorted version of A . Compute and return the minimum of $a_{i_2} - a_{i_1}, a_{i_3} - a_{i_2}, \ldots, a_{i_n} - a_{i_{n-1}}$.	
	Correctness: The minimum difference $ a_i - a_j $ is achieved when a_i and a_j are consecutive in the sorted	
	version of A .	1
	Running time: Merge sorting an array of size n requires $O(n \log n)$ time. Computing the minimum of	
	$a_{i_j} - a_{i_{j-1}}$ over $j = 2, 3, \dots, n$ takes $O(n)$ time.	1

Let M denote the maximum of these absolute differences, and m the minimum of them. The problem of



The algorithm: Let P_i, Q_i, R_i, S_i be the vertices of the <i>i</i> -th quadrilateral. Compute the convex hull of the $4n$ points P_i, Q_i, R_i, S_i , $i = 1, 2,, n$. Output this convex hull.	2
Correctness: Any simple quadrilateral can be triangulated by two triangles. For example, let $PQRS$ be a quadrilateral. Since the sum of the internal angles of any simple quadrilateral is 360° , a quadrilateral cannot have two or more internal angles $> 180^{\circ}$. If $PQRS$ contains such an angle, we rename the vertices (if necessary) and assume that the internal angle at P is $> 180^{\circ}$. But then, the triangles PQR and PRS constitute a triangulation of $PQRS$.	2
Running time: Use an $O(n \log n)$ -time algorithm (like sorting followed by Graham's scan or Preparata and Hong's divide-and-conquer algorithm) for the computation of the convex hull. Here, we have $4n$ points. So the running time is $O(4n \log(4n))$ which is again $O(n \log n)$.	1
What is the smallest convex polygon enclosing a circle?	(5)
No such polygon exists. For any polygon enclosing a circle, we can find a smaller polygon (with more edges) that encloses the circle.	
	Correctness: Any simple quadrilateral can be triangulated by two triangles. For example, let $PQRS$ be a quadrilateral. Since the sum of the internal angles of any simple quadrilateral is 360° , a quadrilateral cannot have two or more internal angles $> 180^{\circ}$. If $PQRS$ contains such an angle, we rename the vertices (if necessary) and assume that the internal angle at P is $> 180^{\circ}$. But then, the triangles PQR and PRS constitute a triangulation of $PQRS$. Running time: Use an $O(n \log n)$ -time algorithm (like sorting followed by Graham's scan or Preparata and Hong's divide-and-conquer algorithm) for the computation of the convex hull. Here, we have $4n$ points. So the running time is $O(4n \log(4n))$ which is again $O(n \log n)$. What is the smallest convex polygon enclosing a circle? No such polygon exists. For any polygon enclosing a circle, we can find a smaller polygon (with more edges)

(5)

non-convex) in the plane.

substring of S and T. Design an O(mn)-time dynamic programming algorithm for solving this problem. (15) (**Hint:** Consider the longest common suffix (or its length) $E_{i,j}$ of S[0 ... i] and T[0 ... j].)

(**Remark:** This problem can be solved in O(m + n) time by using sophisticated data structures like generalized suffix trees.)

Solution The algorithm: We use an auxiliary two-dimensional array E of size $m \times n$. The variable maxlen stores the maximum common substring found so far, whereas the variable endpos stores the index of the last character of this common substring in the string S.

7

6

```
Initialize maxlen = 0.
```

```
/* Initialize the first column */
for i = 0, 1, \dots, m - 1
     if (A[i] equals B[0])
          set E[i][0] = 1,
          maxlen = 1, and
          endpos = i.
     else set E[i][0] = 0.
/* Initialize the first row */
for j = 1, 2, ..., n - 1
     if (A[0]  equals B[j])
          set E[0][j] = 1,
          endpos = 0, and
          maxlen = 1.
     else set E[0][j] = 0.
/* Update the remaining E[i][j] values in the row-major order */
for i = 1, 2, \dots, m - 1
     for j = 1, 2, \dots, n - 1
          if (A[i] \text{ equals } B[j]) set E[i][j] = E[i-1][j-1] + 1, else set E[i][j] = 0.
          if (E[i][j] > maxlen)
               set maxlen = E[i][j].
               set endpos = i.
/* Return the longest common substring */
```

Correctness: The length $E_{i,j}$ of the longest common suffix of $S[0 \dots i]$ and $T[0 \dots j]$ satisfies the recursive definition

$$E_{i,j} = \begin{cases} E_{i-1,j-1} + 1 & \text{if } S[i] = T[j] \\ 0 & \text{otherwise} \end{cases}$$

return $S[endpos - maxlen + 1 \dots endpos]$.

as long as $i \ge 1$ and $j \ge 1$. The boundary conditions are

$$E_{i,0} = \begin{cases} 1 & \text{if } S[i] = T[0] \\ 0 & \text{otherwise,} \end{cases} \quad \text{and} \quad E_{0,j} = \begin{cases} 1 & \text{if } S[0] = T[j] \\ 0 & \text{otherwise.} \end{cases}$$

The order, in which the values $E_{i,j}$ are computed above, ensures that the value of $E_{i-1,j-1}$ is already available during the computation of $E_{i,j}$ for $i \ge 1$ and $j \ge 1$.

Running time: Initialization of the first column requires $\Theta(m)$ time. Initialization of the first row requires $\Theta(n)$ time. The subsequent doubly nested loop runs (m-1)(n-1) times with each iteration taking $\Theta(1)$ time. The total running time is, therefore, $\Theta(mn)$.