
CS60001 Advances in Algorithms, Autumn 2008– 09

Mid-Semester Test

Maximum marks: 50 September 26, 2008 Total time: 2 hours

1. Suppose that the running timeT (n) of an algorithm on an input of sizen satisfies

T (n) = T (⌈n/2⌉) + T (⌊n/2⌋) + cn log n

for all n > 2, wherec is a positive constant. Deduce thatT (n) = Θ(n log2 n). (10)

Solution Step 1: First show, by induction onn, thatT (n) is an increasing function ofn. This implies thatT (2t) 6

T (n) 6 T (2t+1), where2t 6 n < 2t+1. 2

Step 2:Solve the recurrence forn = 2t. 4

T (2t) = 2T (2t−1) + c′t2t (wherec′ = c log 2 > 0 is a constant)

= 2[2T (2t−2) + c′(t − 1)2t−1] + c′t2t

= 22T (2t−2) + c′[(t − 1) + t]2t

= 22[2T (2t−3) + c′(t − 2)2t−2] + c′[(t − 1) + t]2t

= 23T (2t−3) + c′[(t − 2) + (t − 1) + t]2t

· · ·

= 2tT (1) + c′[1 + 2 + · · · + (t − 2) + (t − 1) + t]2t

= d2t + c′t(t + 1)2t−1 (whered = T (1) is a positive constant)

= (c′t2 + c′t + 2d)2t−1.

Step 3: Upper bound
Considern in the range2t 6 n < 2t+1. We have

T (n) 6 T (2t+1) = (c′(t + 1)2 + c′(t + 1) + 2d)2t 6 (c′(lg n + 1)2 + c′(lg n + 1) + 2d)n.

It follows thatT (n) = O(n log2 n). 2

Step 4: Lower bound
Forn satisfying2t 6 n < 2t+1, we have

T (n) > T (2t) = (c′t2 + c′t + 2d)2t−1 > (c′(lg n − 1)2 + c′(lg n − 1) + 2d)
n

4
.

Therefore,T (n) = Ω(n log2 n). 2

— Page 1 of 5 —

2. Let A be an array ofn > 2 integersa0, a1, . . . , an−1. Consider all absolute differences|ai − aj| for i 6= j.
Let M denote the maximum of these absolute differences, andm the minimum of them. The problem of
determiningM (resp.m) is called the maximum-difference (resp. minimum-difference) problem.

(a) Design anO(n)-time algorithm to computeM . (5)

Solution The algorithm: 3
First, obtain the minimum elementas in the array.
Then, obtain the maximum elementat in the array.
Finally, returnat − as.

Correctness:Assumeai > aj. Then,|ai − aj | = ai − aj is maximized, whenai is as large as possible andaj

is as small as possible. 1

Running time: The minimum of an array ofn elements can be found inO(n) time. Similar is the case for the
maximum. 1

(b) Design anO(n log n)-time algorithm to computem. (5)

Solution The algorithm: 3
Merge sort the arrayA in ascending order.
Let ai1 , ai2 , . . . , ain

be the sorted version ofA.
Compute and return the minimum ofai2 − ai1 , ai3 − ai2 , . . . , ain

− ain−1
.

Correctness: The minimum difference|ai − aj | is achieved whenai andaj are consecutive in the sorted

version ofA. 1

Running time: Merge sorting an array of sizen requiresO(n log n) time. Computing the minimum of
aij

− aij−1
overj = 2, 3, . . . , n takesO(n) time. 1

— Page 2 of 5 —

(c) Consider the following computational problem:
Element uniqueness: Determine whether an array ofn integers contains duplicates.

It can be proved (using techniques other than reduction) that element uniquenesshas a lower bound of
Ω(n log n) (under reasonable models of computation). Using this result, prove that the algorithm of Part (b)
is optimal. (5)

Solution We reduceelement uniquenessto minimum differenceas follows.

Let A be the input array forelement uniqueness.
PassA itself to aminimum differencealgorithm.
If the minimum differencealgorithm returns0, return “elements are not unique”,
else return “elements are unique”.

Soelement uniqueness6 minimum difference. Sinceelement uniquenesshas a lower bound ofΩ(n log n) and
the above reduction algorithm runs inO(n) (that is,o(n log n)) time, it follows that any algorithm forminimum
differencemust run inΩ(n log n) time (in the worst case).

3. We often need to compute the convex hull (smallest enclosingconvex polygon) of general geometric objects.

(a) Design anO(n log n)-time algorithm to compute the convex hull ofn triangles in the plane. (5)

Solution The algorithm: Let Pi, Qi, Ri be the vertices of thei-th triangle. Compute the convex hull of the3n points
Pi, Qi, Ri, i = 1, 2, . . . , n. Output this convex hull. 2

Correctness: Since a triangle is a convex polygon, it is immediate that a convex region encloses a triangle if
and only if it encloses the three vertices of the triangle. 2

Running time: Use anO(n log n)-time algorithm (like sorting followed by Graham’s scan or Preparata and
Hong’s divide-and-conquer algorithm) for the computationof the convex hull. Here, we have3n points. So the
running time isO(3n log(3n)) which is againO(n log n). 1

— Page 3 of 5 —

(b) Design anO(n log n)-time algorithm to compute the convex hull ofn simple quadrilaterals (may be
non-convex) in the plane. (5)

Solution The algorithm: Let Pi, Qi, Ri, Si be the vertices of thei-th quadrilateral. Compute the convex hull of the4n

pointsPi, Qi, Ri, Si, i = 1, 2, . . . , n. Output this convex hull. 2

Correctness: Any simple quadrilateral can be triangulated by two triangles. For example, letPQRS be a
quadrilateral. Since the sum of the internal angles of any simple quadrilateral is3600, a quadrilateral cannot
have two or more internal angles> 1800. If PQRS contains such an angle, we rename the vertices (if
necessary) and assume that the internal angle atP is > 1800. But then, the trianglesPQR andPRS constitute
a triangulation ofPQRS. 2

Running time: Use anO(n log n)-time algorithm (like sorting followed by Graham’s scan or Preparata and
Hong’s divide-and-conquer algorithm) for the computationof the convex hull. Here, we have4n points. So the
running time isO(4n log(4n)) which is againO(n log n). 1

(c) What is the smallest convex polygon enclosing a circle? (5)

Solution No such polygon exists. For any polygon enclosing a circle, we can find a smaller polygon (with more edges)
that encloses the circle.

— Page 4 of 5 —

4. Given stringsS and T of lengthsm and n respectively, your task is to determine the longest common
substring ofS andT . Design anO(mn)-time dynamic programming algorithm for solving this problem. (15)
(Hint: Consider the longest common suffix (or its length)Ei,j of S[0 . . . i] andT [0 . . . j].)
(Remark: This problem can be solved inO(m + n) time by using sophisticated data structures like
generalized suffix trees.)

Solution The algorithm: We use an auxiliary two-dimensional arrayE of sizem × n. The variablemaxlen stores the
maximum common substring found so far, whereas the variableendpos stores the index of the last character of
this common substring in the stringS. 7

Initialize maxlen = 0.

/* Initialize the first column */
for i = 0, 1, . . . , m − 1

if (A[i] equalsB[0])
setE[i][0] = 1,
maxlen = 1, and
endpos = i.

else setE[i][0] = 0.

/* Initialize the first row */
for j = 1, 2, . . . , n − 1

if (A[0] equalsB[j])
setE[0][j] = 1,
endpos = 0, and
maxlen = 1.

else setE[0][j] = 0.

/* Update the remainingE[i][j] values in the row-major order */
for i = 1, 2, . . . , m − 1

for j = 1, 2, . . . , n − 1
if (A[i] equalsB[j]) setE[i][j] = E[i − 1][j − 1] + 1, else setE[i][j] = 0.
if (E[i][j] > maxlen)

setmaxlen = E[i][j].
setendpos = i.

/* Return the longest common substring */
returnS[endpos − maxlen + 1 . . . endpos].

Correctness: The lengthEi,j of the longest common suffix ofS[0 . . . i] andT [0 . . . j] satisfies the recursive
definition

Ei,j =
{

Ei−1,j−1 + 1 if S[i] = T [j]
0 otherwise

as long asi > 1 andj > 1. The boundary conditions are

Ei,0 =

{

1 if S[i] = T [0]
0 otherwise,

and E0,j =
{

1 if S[0] = T [j]
0 otherwise.

The order, in which the valuesEi,j are computed above, ensures that the value ofEi−1,j−1 is already available

during the computation ofEi,j for i > 1 andj > 1. 6

Running time: Initialization of the first column requiresΘ(m) time. Initialization of the first row requires
Θ(n) time. The subsequent doubly nested loop runs(m−1)(n−1) times with each iteration takingΘ(1) time.
The total running time is, therefore,Θ(mn). 2

— Page 5 of 5 —

