
CS60001 Advances in Algorithms, Autumn 2008– 09

End-Semester Test

Maximum marks: 60 November 22, 2008 Total time: 3 hours

Roll no: Name:

• Write your answers in the question paper itself. Be brief and precise. Answer all questions.

• Avoid untidiness in the answer script.

1. The Manhattan distance between two pointsP1 = (x1, y1) andP2 = (x2, y2) in the plane is defined as
d∞(P1, P2) = max(|x1 − x2|, |y1 − y2|). Your task is to compute the Voronoi diagram of the three points
P1 = (0, 0), P2 = (8, 6) andP3 = (12,−4) with respect to the Manhattan distance. The locus of the points
P equidistant fromP1 andP2 (that is,d∞(P,P1) = d∞(P,P2)) is provided. Draw the similar loci for the
two other pairs(P2, P3) and(P1, P3). Then, mark the Voronoi cells of the three pointsP1, P2 andP3. (3+3+4)

Solution

(12,−4)

(8,6)

(0,0)

— Page 1 of 10 —

2. An interval [a, b] refers to the set of real numbersx satisfyinga 6 x 6 b. Two intervalsI1 andI2 are called
overlapping ifI1 ∩ I2 6= ∅.

You are givenn intervals I1 = [a1, b1], I2 = [a2, b2], . . . , In = [an, bn], each specified by its two
endpoints. Your task is to find all the pairs(Ii, Ij) of overlapping intervals. Describe anO(n log n+h)-time
algorithm to solve this problem, whereh is the number of overlapping pairs. You must supply an argument
corroborating that your program achieves this running time. You may assume that the endpoints of the input
intervals are in general position (no repetitions). (6+4)

Solution I propose a sweep algorithm for solving this problem. Here, apoint sweeps from−∞ to +∞. An events occurs
when the sweep point meets an endpoint of an interval. The events are processed one by one with increasing
value. For a particular position of the sweep point, theactive intervals are those intervals that contain the sweep
point. We maintain a listL of active intervals at each position of the sweep point.

Initialization: Store the endpointsa1, b1, a2, b2, . . . , an, bn in a min-priority queueQ. Initialize L to empty.

Event loop: As long asQ is not empty, consider the next event (endpoint), handle it,and dequeue this event
from Q. We have only two types of events.

Enter interval I: At this point,I becomes active and so overlaps with all other active segments at
this point. Output(I, J) for all intervalsJ in L. InsertI in L.

Leave interval I: After this point,I becomes inactive, so deleteI from L.

Running time: We realizeQ as a min-heap. Initializing the heap by2n points requiresO(n) time. The total
number of events that occur is exactly2n, that is, we need to call EXTRACT-MIN onQ exactly2n times. This
calls for a total ofO(n log n) time to manipulate the queue.

We maintainL as a doubly connected linked list. We also maintain a list of pointers indexed byi = 1, 2, . . . , n.
The i-th pointer points to the node in the linked list, storing thei-th intervalIi, provided thatIi is active. If
not, Ii is not present inL, and the corresponding pointer may be set to NULL. Each insertion of an interval
in L during an enter interval event or each deletion of an interval from L during a leave interval event can be
handled inO(1) time. Since each interval is inserted only once inL and deleted only once fromL, the total
cost associated with the manipulation ofL is O(n).

Finally, identifying and reportingh overlapping pairs of intervals take a total ofO(h) time.

— Page 2 of 10 —

3. Let G = (V,E) be a simple directed graph with each edge carrying a positivecost. Suppose that each
vertex in G also carries a positive cost. You may visualizeG as a computer network in which the
cost associated with the edge(v,w) stands for the cost of transferring a packet fromv to w. On the
other hand, the cost associated with a vertexv is the cost of relaying a packet atv. Relaying costs are
not applicable at the source and the destination. To sum up, the total cost of the pathv1, v2, . . . , vk is
c(v1, v2) + c(v2) + c(v2, v3) + c(v3) + · · · + c(vk−1) + c(vk−1, vk).

You are given a distinguished vertexu ∈ V (G) (the source). Your task is to compute the cheapest paths
from u to all vertices inG. Modify Dijkstra’s SSSP algorithm to solve this problem. (Mention only the steps
you have modified. Do not write the entire algorithm.) Your modification should have the same running time
as Dijkstra’s algorithm (supply an argument). Also prove the correctness of your modification. (6+2+2)

Solution The only modification is during the updating of the current shortest distanceD[v]. Whenw is moved fromQ

to P , we check whetherD[w] + c(w) + c(w, v) < D[v]. If so, we replaceD[v] by D[w] + c(w) + c(w, v).

Since only the distances are calculated in a new way (D[w] + c(w) + c(w, v) instead ofD[w] + c(w, v)) and
the modification entails no further change in Dijkstra’s algorithm, the modified algorithm continues to have the
same running time as Dijkstra’s original SSSP algorithm.

The proof of correctness remains exactly the same as is givenin connection with Dijkstra’s SSSP algorithm.

Note: There is an alternative way to look at the problem, which alsohelps in an understanding of the proof of
correctness of the above solution. We convert the given graph G to a graphG′ as follows. We split every vertex
v of G into two verticesvin andvout connected by the (directed) edge(vin, vout). For every edge(v, w) in G,
we add the edge(vout, win) with costc(v, w). Forv 6= u, we define the cost of(vin, vout) to be the relaying cost
c(v). Finally, we take the cost of(uin, uout) as0. We run Dijkstra’s original SSSP algorithm on the converted
graphG′ with sourceuout. Forv 6= u, the cheapestu, v path inG corresponds to the cheapest(uout, vin) path
in G′. The conversion ofG to G′ runs inO(|E| + |V |) time. The running time of Dijkstra’s SSSP algorithm
onG′ is O

(

(|E| + |V |) log(2|V |)
)

. If we make the assumption that every nodev ∈ V is reachable fromu, we
have|E| > |V |− 1. In this case, the running time of this alternative solutionis againO(|E| log |V |). However,
if |E| = o(|V |), then this alternative solution leads to an increase in the running time.

— Page 3 of 10 —

4. Consider the network flow shown in the following figure. Here,s is the source, andt is the sink. The
capacityc(e) and the current flow amountf(e) are shown against the edgee asc(e), f(e).

s t

u

v

w

x

y

z5,5

4,1

8,3 6,4
3,2

5,3

4,0

7,1

1,1
7,1

8,7

5,4

6,4

6,4

(a) Draw the residual graph for this flow. (5)

Solution

s t

u

v

w

x

y

z

4
53

1

5
2 3

6

1

1

2
4

1

24
4

7

1

6

1

5 4

3

(b) Mention ans, t path in the residual graph. (1)

Solution s, v, w, x, y, t

(c) Redraw the network after augmenting the flow along the path ofPart (b). (4)

Solution

s t

u

v

w

x

y

z5,5

8,3 6,4
3,2

7,1

1,1

8,7

5,4

6,44,3
5,5

7,3

4,2

6,6

— Page 4 of 10 —

5. Two computational problemsP1 andP2 are calledpolynomial-time equivalent if there exist polynomial-time
reductionsP1 6 P2 andP2 6 P1. Prove or disprove: Every two NP-Complete problems are polynomial-
time equivalent. (5)

Solution True. Let P1 andP2 be two NP-Complete problems. By definition,P1, P2 ∈ NP. SinceP2 is NP-Complete,
there exists a polynomial-time reductionP1 6 P2. Moreover, sinceP1 is NP-Complete, there exists a
polynomial-time reductionP2 6 P1. Therefore,P1 andP2 are polynomial-time equivalent.

6. A Boolean formula is said to be in thedisjunctive normal form (or DNF or thesum-of-products form) if it
is the disjunction (OR) of conjunctions (AND) of literals. For example,(x1 ∧ x̄3) ∨ (x̄2 ∧ x̄3 ∧ x4) ∨ (x̄2)
is in the DNF. By DNF-SAT, we refer to the computational problem of deciding whether a Boolean formula
in the DNF is satisfiable. Prove that DNF-SAT∈ P. (5)

Solution Let φ = P1 ∨ P2 ∨ · · · ∨ Pl, where eachPi is a conjunction of literals. It is evident thatφ is satisfiable if and
only if somePi is satisfiable. LetPi = y1 ∧ y2 ∧ · · · ∧ yr, where eachyi is a variable or its complement.Pi

is satisfiable if and only if it is consistent to writey1 = y2 = · · · = yr = 1, that is, if and only ifPi does not
contain contradictory literals (x andx̄) simultaneously.

— Page 5 of 10 —

7. Two (simple undirected) graphsG1 = (V1, E1) andG2 = (V2, E2) are said to beisomorphic if there exists
a bijectionf : V1 → V2 such that(u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2.

A subgraph of a graphG = (V,E) is a graphH = (V ′, E′) with V ′ ⊆ V and with(u, v) ∈ E′ whenever
(u, v) ∈ E (for u, v ∈ V ′). In other words,H is a subgraph ofG if its vertex set is a subset of the vertex set
of G and if all edges ofG with both vertices inV (H) are also edges ofH.

Let SUBGRAPH-ISOMORPHISM denote the computational problem to decide, for the input of two graphs
G andG′, whetherG contains a subgraph isomorphic toG′. Prove that SUBGRAPH-ISOMORPHISM is
NP-Complete. (10)

Solution First, I show SUBGRAPH-ISOMORPHISM∈ NP. For an input(G, H) of SUBGRAPH-ISOMORPHISM,
guess a subsetV ′ ⊆ V (G) together with a bijective functionf : V ′ → V (H). Then, check whetherf preserves
the adjacency relations ofV ′ in V (H). 3

To show that SUBGRAPH-ISOMORPHISM is NP-Hard, I reduce CLIQUE to SUBGRAPH-ISOMORPHISM.
Let (G, r) be an input for CLIQUE. We construct the input(G, Kr) for SUBGRAPH-ISOMORPHISM, where
Kr is the complete graph onr vertices.G has anr-clique if and only ifG has a subgraph isomorphic toKr. 6

This reduction evidently runs in polynomial time. 1

— Page 6 of 10 —

ROUGH WORK

— Page 7 of 10 —

ROUGH WORK

— Page 8 of 10 —

ROUGH WORK

— Page 9 of 10 —

ROUGH WORK

(8,6)

(12,−4)

(0,0)

— Page 10 of 10 —

