CS60001 Advances in Algorithms, Autumn 2008—09

End-Semester Test

Maximum marks: 60 November 22, 2008 Total time: 3 hours

Roll no: Name:

e Write your answers in the question paper itself. Be brief and precise. Answer all questions.
e Avoid untidiness in the answer script.

1. The Manhattan distance between two pointd®; = (z1,y1) and P, = (z9,y2) in the plane is defined as
doo(P1, P2) = max(|z1 — x2],|y1 — y2|). Your task is to compute the Voronoi diagram of the three {soin
P, =(0,0), P, = (8,6) andP; = (12, —4) with respect to the Manhattan distance. The locus of thetpoin
P equidistant fromP; and P, (that is,d (P, P1) = dw (P, P»)) is provided. Draw the similar loci for the

two other pairg P2, P3) and(Py, P3). Then, mark the Voronoi cells of the three poifts P, and Ps. (3+3+4)
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2. Aninterval [a, b] refers to the set of real numberssatisfyinga < 2 < b. Two intervalsl; andI, are called
overlapping ifI; N I # 0.

You are givenn intervals I; = [a1,b1], Io = [a2,b2], ..., I, = [an,by], €ach specified by its two
endpoints. Your task is to find all the paiig, ;) of overlapping intervals. Describe &1n log n+ h)-time
algorithm to solve this problem, wheteis the number of overlapping pairs. You must supply an argquime
corroborating that your program achieves this running tilveu may assume that the endpoints of the input
intervals are in general position (no repetitions). (6+4)

Solution | propose a sweep algorithm for solving this problem. Hemgiat sweeps from-oco to +o0o0. An events occurs
when the sweep point meets an endpoint of an interval. Thetgeaee processed one by one with increasing
value. For a particular position of the sweep point,dbtve intervals are those intervals that contain the sweep
point. We maintain a lisL. of active intervals at each position of the sweep point.

Initialization: Store the endpoints,, b1, as, ba, . . ., an, b, iN @ Min-priority queue). Initialize L to empty.

Event loop: As long as(@ is not empty, consider the next event (endpoint), handkmnit, dequeue this event
from Q. We have only two types of events.

Enter interval I: At this point,I becomes active and so overlaps with all other active segrant
this point. Output/, J) for all intervals.J in L. Insertl in L.

Leaveinterval I: After this point,/ becomes inactive, so deletdrom L.

Running time: We realize as a min-heap. Initializing the heap by points require®)(n) time. The total
number of events that occur is exacly, that is, we need to call EXTRACT-MIN o exactly2n times. This
calls for a total ofO(n logn) time to manipulate the queue.

We maintainL as a doubly connected linked list. We also maintain a listofifers indexed by = 1,2, ..., n.
The i-th pointer points to the node in the linked list, storing thil interval I;, provided thatl; is active. If
not, I; is not present in_, and the corresponding pointer may be set to NULL. Each fizgeof an interval
in L during an enter interval event or each deletion of an infdrean L during a leave interval event can be
handled inO(1) time. Since each interval is inserted only oncelimnd deleted only once from, the total
cost associated with the manipulationlofs O(n).

Finally, identifying and reporting overlapping pairs of intervals take a total©fh) time.
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3. Let G = (V, E) be a simple directed graph with each edge carrying a positig. Suppose that each
vertex in G also carries a positive cost. You may visualigeas a computer network in which the
cost associated with the edge, w) stands for the cost of transferring a packet franto w. On the
other hand, the cost associated with a vertes the cost of relaying a packet at Relaying costs are
not applicable at the source and the destination. To sumhgptatal cost of the pathy,vo,..., v is
c(vi,v2) + c(v2) + c(ve, v3) + c(vs) + - - - + c(vk—1) + c(Vg—1,Vk).

You are given a distinguished vertexe V(G) (the source). Your task is to compute the cheapest paths
from w to all vertices inG. Modify Dijkstra’s SSSP algorithm to solve this problem. gihtion only the steps

you have modified. Do not write the entire algorithm.) Yourdtiwation should have the same running time

as Dijkstra’s algorithm (supply an argument). Also prove tlorrectness of your modification. (6+2+2)

Solution The only modification is during the updating of the currentrsést distanced[v]. Whenw is moved fromQ
to P, we check whetheD[w] + c¢(w) + ¢(w, v) < D[v]. If so, we replaceD[v] by D{w] + c(w) + c(w, v).

Since only the distances are calculated in a new wWalyu{ + c¢(w) + c¢(w, v) instead ofD[w] + ¢(w, v)) and
the modification entails no further change in Dijkstra’salthm, the modified algorithm continues to have the
same running time as Dijkstra’s original SSSP algorithm.

The proof of correctness remains exactly the same as is giveannection with Dijkstra’s SSSP algorithm.

Note: There is an alternative way to look at the problem, which &lslps in an understanding of the proof of
correctness of the above solution. We convert the giventgfap a graph’ as follows. We split every vertex

v of G into two verticesv;,, andv,,; connected by the (directed) ed@e.,, vout). For every edgév, w) in G,

we add the edg@out, win ) With coste(v, w). Forv # u, we define the cost @by, vout ) to be the relaying cost
¢(v). Finally, we take the cost dfu;,, uout) 8s0. We run Dijkstra’s original SSSP algorithm on the converted
graphG’ with sourceu,,;. Forv # u, the cheapest, v path inG corresponds to the cheapést..:, vin) path

in G’. The conversion of7 to G’ runs inO(|E| + |V]) time. The running time of Dijkstra’'s SSSP algorithm
onGisO ((|E| +|V]) log(2|V])). If we make the assumption that every nade V is reachable from, we
have|E| > |V| — 1. In this case, the running time of this alternative solut®againQ(| E|log |V|). However,

if |E| = o(|]V]), then this alternative solution leads to an increase inuheing time.

— Page 30of 10 —



4. Consider the network flow shown in the following figure. Heses the source, and is the sink. The
capacityc(e) and the current flow amoutft(e) are shown against the edgasc(e), f(e).

(a) Draw the residual graph for this flow. (5)

Solution

(b) Mention ans, t path in the residual graph. D)

Solution s, v, w,z,y,t

(c) Redraw the network after augmenting the flow along the pafPaof (b). (4)

Solution
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5. Two computational problemB; and P, are calledholynomial-time equivalent if there exist polynomial-time
reductionsP;, < P, andP, < P;. Prove or disprove: Every two NP-Complete problems are npntyial-
time equivalent. (5)

Solution True. Let P, and P, be two NP-Complete problems. By definitiaR,, P, € NP. SinceP, is NP-Complete,
there exists a polynomial-time reductidn < P,. Moreover, sinceP; is NP-Complete, there exists a
polynomial-time reductio®, < P;. Therefore P, and P, are polynomial-time equivalent.

6. A Boolean formula is said to be in theégunctive normal form (or DNF or the sum-of-products form) if it
is the disjunction (OR) of conjunctions (AND) of literalsofFexample(x; A Z3) V (T2 A Tz A x4) V (T2)
is in the DNF. By DNF-SAT, we refer to the computational pexbl of deciding whether a Boolean formula
in the DNF is satisfiable. Prove that DNF-SATP. (5)

Solution Let¢p = P, V P, V --- V P, where eaclP; is a conjunction of literals. It is evident thatis satisfiable if and
only if someP,; is satisfiable. LeP’, = y1 A y2 A - -+ A .., Where eachy; is a variable or its complemenE,
is satisfiable if and only if it is consistent to writg = yo = --- = y,. = 1, that is, if and only ifP; does not
contain contradictory literalss(andz) simultaneously.
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7. Two (simple undirected) grapis; = (V1, E1) andGy = (Va, Ey) are said to bésomorphic if there exists
a bijectionf : V; — V5 such that(u,v) € E; if and only if (f(u), f(v)) € Es.
A subgraph of a graphG = (V, E) is a graphH = (V’, E’) with V' C V and with(u,v) € E’ whenever
(u,v) € E (foru,v € V'). In other words H is a subgraph of if its vertex set is a subset of the vertex set
of G and if all edges of7 with both vertices i/ (H) are also edges df .

Let SUBGRAPH-ISOMORPHISM denote the computational pnable decide, for the input of two graphs
G andG’, whetherG contains a subgraph isomorphic@. Prove that SUBGRAPH-ISOMORPHISM is
NP-Complete. (10)

Solution First, | show SUBGRAPH-ISOMORPHISM: NP. For an input(G, H) of SUBGRAPH-ISOMORPHISM,
guess a subsét’ C V(G) together with a bijective functiofi : V' — V(H). Then, check whethef preserves

the adjacency relations &' in V(H).

To show that SUBGRAPH-ISOMORPHISM is NP-Hard, | reduce CUEXo SUBGRAPH-ISOMORPHISM.
Let (G, r) be an input for CLIQUE. We construct the inpi@, K,.) for SUBGRAPH-ISOMORPHISM, where

K, is the complete graph anvertices.G has an--clique if and only ifG has a subgraph isomorphic f6,. @

This reduction evidently runs in polynomial time.
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ROUGH WORK
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