CS60001 Advances in Algorithms, Autumn 2008—09

Class test 1

Maximum marks: 40 September 12, 2008 Total time: 1 hour

Roll no: Name:

[Write your answers in the question paper itself. Be brief pratise. Answer alfjuestions,

1. Let A be an array of: integersay, a1, . ..,a,—1 (negative integers are allowed). Denote, Ay . .. j], the
subarraya;, a;+1, . . . ,a; fori < j. Also letS; ; denote the sum; +a;1 +- - - +a;. Your task is to find out
the maximum value of; ; over all allowed indiceg, j. Call this maximum value5. For example, for the
arrayl,3,—-7,2,—1,5,—1,—-2,4, —6, 3, this maximum sumi$' = S3 g = 2+(—1)+5+(—1)+(-2)+4 =
7. This example illustrates that the maximum sum may come a@ubarray containing negative elements.

Let us also allowj < i in the notationA[: ... j]. In this caseA[i. .. j] denotes thempty subarray (that is,
a subarray that ends before it starts) with sty = 0. Indeed, if all the elements of are negative, then
one returng) as the maximum subarray sum.

(a) Design a naive algorithm that computgs; for all the pairsi, j with 0 < 7 < j < n — 1, and obtains
the maximum of these computed sums. Your program must r@r{i?) time. Write a pseudocode for your
algorithm. Also supply an argument that your algorithm bgs?) running time. (10)

Solution Initialize S=0.
For i=0,1,....,n—1 {
Initialize temporary sum T =0.
For j=4,i+1,....,n—1 {
Update T =T + a;.
if T>S, then S=T.

}
}
Cut put S.
The above algorithm computes ; in a doubly nested loop. The inner loop is based upon the Fet t
Sii—1 = 0andS,; = S;;j-1 + a; for j > i. Each iteration of the inner loop take€x1) running time.

The total number of iterations of the inner loopist (n — 1) + - -+ 2+ 1 = n(n — 1)/2, which is©(n?).

— Page 1 of4 —

Our plan is to arrive at ao(n)-time dynamic-programming algorithm to solve the maximurhasray sum
problem.

(b) Forj > 0, define E; to be the maximum of all the value$; ; for i = 0,1,...,5. Thus, E;
represents the maximum subarray sum over all subarraysi@ratiindex;. If no such subarray has
positive sum, we také’; = 0 (this corresponds to the empty suffix). We also tdke; = 0. Prove
that £, = max(0, E;_; + a;) for j > 0. (5)

Solution A maximum-sum suffix ofA[0. . . j] is obtained by appending; to a maximum-sum suffix af{[0...j — 1].
However, ifa; < 0, we may have?;_; +a; < 0. In this caseA[0. . . j] does not have a non-empty suffix with
positive sum.

(c) LetS_; = 0. Forj > 0, defineS; = max; j/ ({Sm/ |0 < <j <jHU {O}). Our task is to
computeS,,_; = S. Prove thatS; = max(S;_1, E;) for j > 0. (5)

Solution When a new element; is considered, the maximum-sum subarrdly . .. ;'] of A[0...j] is to be searched
from two pools—the first corresponding f6 < j and the second t§f = j. The first case refers to a maximum-

sum subarray ofA[0 ... j — 1], whereas the second case refers to subarray$of. . j] that includes; (that is,
suffixes ofA[0. .. j]).

— Page 2 of 4 —

(d) Describe arp(n)-time algorithm for the computation of the maximusn Write a pseudocode for your
algorithm and also justify that your algorithm runs in lingiane. Inefficient management of extra space will
be penalized. (10)

Solution Initialize S=0 and E=0.
For 7=0,1,2,...,n—1 {
First, update F as F =max(0,E + a;).
Then, update S as S =max(S,E).

}
Cut put S.

There are exactly interations of the loop, and each iteration requires onlgstant amount of time.

(e) Suppose that the minimum sum= min; ; ({Sm- |0<i<j<n-1}U {O}) is to be computed.
Propose am(n)-time algorithm for this minimum subarray sum problem. (5)

Solution Invoke the maximum subarray sum algorithm of Part (d) on thayad’ with elements:, = —a;.

— Page 30of4 —

(f) Modify the algorithm of Part (d) so that the indicégj, for which S; ; is maximized, are computed
(along with the maximum surfi). Your modification should continue to run @(n) time. (10)

Solution We plan to store the indiceg, ;' corresponding to the maximum-sum subartdy’ ... ;'] of A[0...j].
Moreover, we use the indexto store the maximum-sum suffix[k . .. j] of A[0... j]. If this suffix is empty,
we takek = j + 1.

Initialize S=0 and E =0.
Initialize the indices i/ =0, j'=-1 and k=0.
For j=0,1,2,...,n—1 {
First, update E and k as foll ows:
Compute T = FE + a;.
If T<0, update E=0 and k=j+1,
el se update E=T (k remains the sane).
Then, update S and i',;' as foll ows:
If £>S, update S=E, =k and j =j.
(Nothing needs to be done if E<S.)

}
Qutput S,4,75.

This algorithm is the same as that in Part (d) with the addéi@verhead of updating the indicés/, K. This
updating take®)(1) time in each iteration of the loop, so the running time of tlgweathm remaing)(n).

— Page 4 0f 4 —

