
CS60001 Advances in Algorithms, Autumn 2008– 09

Class test 1

Maximum marks: 40 September 12, 2008 Total time: 1 hour

Roll no: Name:

[Write your answers in the question paper itself. Be brief andprecise. Answer allquestions.]

1. Let A be an array ofn integersa0, a1, . . . , an−1 (negative integers are allowed). Denote, byA[i . . . j], the
subarrayai, ai+1, . . . , aj for i 6 j. Also letSi,j denote the sumai +ai+1 + · · ·+aj. Your task is to find out
the maximum value ofSi,j over all allowed indicesi, j. Call this maximum valueS. For example, for the
array1, 3,−7, 2,−1, 5,−1,−2, 4,−6, 3, this maximum sum isS = S3,8 = 2+(−1)+5+(−1)+(−2)+4 =
7. This example illustrates that the maximum sum may come froma subarray containing negative elements.

Let us also allowj < i in the notationA[i . . . j]. In this case,A[i . . . j] denotes theempty subarray (that is,
a subarray that ends before it starts) with sumSi,j = 0. Indeed, if all the elements ofA are negative, then
one returns0 as the maximum subarray sum.

(a) Design a naive algorithm that computesSi,j for all the pairsi, j with 0 6 i 6 j 6 n − 1, and obtains
the maximum of these computed sums. Your program must run inO(n2) time. Write a pseudocode for your
algorithm. Also supply an argument that your algorithm hasO(n2) running time. (10)

Solution Initialize S = 0.

For i = 0, 1, . . . , n − 1 {

Initialize temporary sum T = 0.

For j = i, i + 1, . . . , n − 1 {

Update T = T + aj.

if T > S, then S = T.

}

}

Output S.

The above algorithm computesSi,j in a doubly nested loop. The inner loop is based upon the fact that
Si,i−1 = 0 andSi,j = Si,j−1 + aj for j > i. Each iteration of the inner loop takesO(1) running time.
The total number of iterations of the inner loop isn + (n − 1) + · · · + 2 + 1 = n(n − 1)/2, which isΘ(n2).

— Page 1 of 4 —

Our plan is to arrive at anO(n)-time dynamic-programming algorithm to solve the maximum subarray sum
problem.

(b) For j > 0, defineEj to be the maximum of all the valuesSi,j for i = 0, 1, . . . , j. Thus, Ej

represents the maximum subarray sum over all subarrays ending at indexj. If no such subarray has
positive sum, we takeEj = 0 (this corresponds to the empty suffix). We also takeE−1 = 0. Prove
thatEj = max(0, Ej−1 + aj) for j > 0. (5)

Solution A maximum-sum suffix ofA[0 . . . j] is obtained by appendingaj to a maximum-sum suffix ofA[0 . . . j − 1].
However, ifaj < 0, we may haveEj−1 +aj < 0. In this case,A[0 . . . j] does not have a non-empty suffix with
positive sum.

(c) Let S−1 = 0. For j > 0, defineSj = maxi′,j′

(

{Si′,j′ | 0 6 i′ 6 j′ 6 j} ∪ {0}
)

. Our task is to

computeSn−1 = S. Prove thatSj = max(Sj−1, Ej) for j > 0. (5)

Solution When a new elementaj is considered, the maximum-sum subarrayA[i′ . . . j′] of A[0 . . . j] is to be searched
from two pools—the first corresponding toj′ < j and the second toj′ = j. The first case refers to a maximum-
sum subarray ofA[0 . . . j − 1], whereas the second case refers to subarrays ofA[0 . . . j] that includeaj (that is,
suffixes ofA[0 . . . j]).

— Page 2 of 4 —

(d) Describe anO(n)-time algorithm for the computation of the maximumS. Write a pseudocode for your
algorithm and also justify that your algorithm runs in linear time. Inefficient management of extra space will
be penalized. (10)

Solution Initialize S = 0 and E = 0.

For j = 0, 1, 2, . . . , n − 1 {

First, update E as E = max(0, E + aj).

Then, update S as S = max(S, E).

}

Output S.

There are exactlyn interations of the loop, and each iteration requires only a constant amount of time.

(e) Suppose that the minimum sums = mini,j

(

{Si,j | 0 6 i 6 j 6 n − 1} ∪ {0}
)

is to be computed.

Propose anO(n)-time algorithm for this minimum subarray sum problem. (5)

Solution Invoke the maximum subarray sum algorithm of Part (d) on the arrayA′ with elementsa′

i = −ai.

— Page 3 of 4 —

(f) Modify the algorithm of Part (d) so that the indicesi, j, for which Si,j is maximized, are computed
(along with the maximum sumS). Your modification should continue to run inO(n) time. (10)

Solution We plan to store the indicesi′, j′ corresponding to the maximum-sum subarrayA[i′ . . . j′] of A[0 . . . j].
Moreover, we use the indexk to store the maximum-sum suffixA[k . . . j] of A[0 . . . j]. If this suffix is empty,
we takek = j + 1.

Initialize S = 0 and E = 0.

Initialize the indices i′ = 0, j′ = −1 and k = 0.

For j = 0, 1, 2, . . . , n − 1 {

First, update E and k as follows:

Compute T = E + aj.

If T < 0, update E = 0 and k = j + 1,

else update E = T (k remains the same).

Then, update S and i′, j′ as follows:

If E > S, update S = E, i′ = k and j′ = j.

(Nothing needs to be done if E 6 S.)

}

Output S, i′, j′.

This algorithm is the same as that in Part (d) with the additional overhead of updating the indicesI, J, K. This
updating takesO(1) time in each iteration of the loop, so the running time of the algorithm remainsO(n).

— Page 4 of 4 —

