CS60001 Advances in Algorithms, Autumn 2008–09 Class test 1

Maximum marks: 40	September 12, 2008	Total time: 1 hour
Roll no:	Name:	
_		

Write your answers in the question paper itself. Be brief and precise. Answer all questions.

- **1.** Let A be an array of n integers $a_0, a_1, \ldots, a_{n-1}$ (negative integers are allowed). Denote, by $A[i \ldots j]$, the subarray a_i, a_{i+1}, \dots, a_j for $i \leq j$. Also let $S_{i,j}$ denote the sum $a_i + a_{i+1} + \dots + a_j$. Your task is to find out the maximum value of $S_{i,j}$ over all allowed indices i, j. Call this maximum value S. For example, for the array 1, 3, -7, 2, -1, 5, -1, -2, 4, -6, 3, this maximum sum is $S = S_{3,8} = 2 + (-1) + 5 + (-1) + (-2) + 4 = -1$ 7. This example illustrates that the maximum sum may come from a subarray containing negative elements. Let us also allow j < i in the notation $A[i \dots j]$. In this case, $A[i \dots j]$ denotes the *empty* subarray (that is, a subarray that ends before it starts) with sum $S_{i,j} = 0$. Indeed, if all the elements of A are negative, then one returns 0 as the maximum subarray sum.
 - (a) Design a naive algorithm that computes $S_{i,j}$ for all the pairs i,j with $0 \le i \le j \le n-1$, and obtains the maximum of these computed sums. Your program must run in $O(n^2)$ time. Write a pseudocode for your algorithm. Also supply an argument that your algorithm has $O(n^2)$ running time. (10)

Our plan is to arrive at an $\mathrm{O}(n)$ -time dynamic-programming algorithm to solve the maximum subarray sum problem.

(b) For $j \ge 0$, define E_j to be the maximum of all the values $S_{i,j}$ for $i=0,1,\ldots,j$. Thus, E_j represents the maximum subarray sum over all subarrays ending at index j. If no such subarray has positive sum, we take $E_j=0$ (this corresponds to the empty suffix). We also take $E_{-1}=0$. Prove that $E_j=\max(0,E_{j-1}+a_j)$ for $j\ge 0$.

(c) Let $S_{-1}=0$. For $j\geqslant 0$, define $S_j=\max_{i',j'}\left(\{S_{i',j'}\mid 0\leqslant i'\leqslant j'\leqslant j\}\cup\{0\}\right)$. Our task is to compute $S_{n-1}=S$. Prove that $S_j=\max(S_{j-1},E_j)$ for $j\geqslant 0$.

(d) Describe an $O(n)$ -time algorithm for the computation of the maximum S . Write a pseudocode for your	
algorithm and also justify that your algorithm runs in linear time. Inefficient management of extra space will	
be penalized.	(10)

(e) Suppose that the minimum sum $s = \min_{i,j} \left(\{ S_{i,j} \mid 0 \leqslant i \leqslant j \leqslant n-1 \} \cup \{0\} \right)$ is to be computed. Propose an O(n)-time algorithm for this minimum subarray sum problem. (5)

(f) Modify the algorithm of Part (d) so that the indices i, j , for which $S_{i,j}$ is maximized, are computed (along with the maximum sum S). Your modification should continue to run in $O(n)$ time. (10)			