
CS29206 Systems Programming Laboratory

Spring 2024

Introduction

Abhijit Das

Pralay Mitra



Where you stand now after PDS and Algo Lab

• You know the syntax of the programming language C.

• You know how to write a C file, compile it, and execute it.

• Your development process

• Your codes are tiny (a few hundred lines at most).

• If you are stuck, you blame the compiler or the machine.

• Your teachers and TAs typically help you by using the printf debugger.

• You stop at the point when you are satisfied with the correctness of the code.

• Later, you blame that the TA’s compiler or machine is buggy.

• The purpose of development

• A basic motivation for writing your codes is getting a good grade.

• Your codes are meant only for you and your teachers and TAs.

• Your codes are (hopefully) not used by anybody else in the world.

• You also do not use other people’s codes (hopefully again).

• Nobody else (not even you) is interested in the codes after the course is over.



The reality is quite different

• A software project typically involves millions of lines of codes.

• You do not develop the code yourself alone.

• You do not write everything in a single C file.

• Your codes are to be used by:

• The rest of the development team

• Other development teams

• The end users

• Not really by you yourself

• Your codes justify your salary and reputation, so you need to make your codes:

• as correct as you can

• as bug-free as you can

• as efficient as you can

• You do not build everything from the scratch, so you need to use other people’s codes.



C, the C compiler, and the compilation process

• Learning only the C syntax at the PDS level is not enough.

• You have developed better familiarity in Algo Lab, still it is not complete.

• There is more to learn.

• You need to know how the compiler works.

• How to compile codes distributed across multiple files.

• How to use other people’s code in your code.

• Copy-paste from other people’s code (if you have the source at all) is a bad idea.

• You need to know how the compilation process works.

• You do not always write codes with a main function.

• If you make a small change in a part of your code, you do not need to recompile everything.



Debugging

• Users are the victims of buggy codes.

• Developers are the culprits.

• The printf debugger is clumsy and very difficult to handle in large codes.

• You need to know the art of debugging.

• If you suspect your foo() function to be faulty, inspect it line by line.

• C does not support range checking on arrays.

• Memory corruption may lead to strange results

• Segmentation faults are some of your deadliest enemies

• Buffer overflow may lead to security problems

• You need to learn the sources of the problem, so that you can repair them.

• You have no option of blaming the user’s machine or compiler.



Efficiency

• A good algorithm is a first necessity.

• Sloppy implementations may make a good algorithm terribly slow.

• You need to identify the bottlenecks in your codes.

• Which functions take unnecessarily large times.

• Which functions are called more often than needed.

• A profiling of your codes is needed to figure these out.



Gradual development process

• You do not develop a million-line code overnight.

• You may have thousands of versions of the code, developed by multiple users.

• The same pieces of codes may be handled by multiple developers.

• Would you retain a copy of the entire project after every single change?

• How do you navigate through the history of changes?

• You need to know how version controlling can be done methodically.



Using the specialists

• Text processing

• Database processing

• There are excellent utilities, each perfected to handle specific jobs.

• You need to know some of these utilities.

• Integrating these utilities in your C codes is oftentimes not straightforward.

• Writing C codes for these is usually a meaningless waste of resources.



The master wrapper

• This is the shell.

• In the simple form, it is just a command interpreter.

• But you can program it.

• You can instruct a shell how to exploit:

• Your C executables

• The specialists

• Itself

• All from the same platform.

• The shell specializes in several tasks like handling your file system.

• The shell is also useful for system administration.


