Introduction to gcc

Abhijit Das
Pralay Mitra

What you do not know about gcc

e What does the gcc compiler do?

o What are header files? Why should one #include them?

e Why should programs with math functions be compiled with the —Im flag?
o What are the compile-time options for gcc?

e How can C programs communicate with the shell?

e What is the C preprocessor?

e How can one write a program in multiple input files?

e What are libraries?

e How can one write one’s own libraries?

CS29206 Systems Programming Laboratory
Spring 2024

The Compilation Process and Runtime Loading

Abhijit Das
Pralay Mitra

The four-stage compilation process

Preprocessing This involves the processing of the # directives. Examples:

e The #include’d files are inserted in your code.
o The #define’d macros are literally substituted throughout your code.

Compiling The input to this process is the preprocessed C file, and the output is an
assembly-language code targeted to the architecture of your machine.

Assembling The assembly-language code generated by compiling is converted to a machine
code called the object file. The external functions (like printf and sqrt) are still
undefined.

Linking The object file(s) is/are eventually converted to an executable file in this process. At
this point, the external functions from C runtime library and other libraries are
included in the executable file.

Loading Some functions available in shared (or dynamic) libraries are loaded during runtime
from shared object files.

The compilation process in a nutshell

Input source (.c, .h) l K

| Preprocessing | cpp 8

Headers and macros processed (.i) I M

| Compiling | gec-S Fl)

Assembly code (.s) L

| Assembling | as /;

Machine code (.0) i I

Static libraries (.a) —>| Linking | ld g
Executable machine code (a.out) . /

Shared libraries (.s0) @

An example of the four-stage compilation process

The file demo.c

#include <stdio.h>
#include <stdlib.h>

#define TEN 10
#define TWENTY 20

int main ()

{
int a, b, c;
a TEN;

b a + TWENTY;

[a *x b;

printf("c = %d\n", c);

exit (0);

Preprocessing

The C preprocessor is called cpp.

$ cpp demo.c > demo.i
$ cat demo.i

typedef unsigned char __u_char;
typedef unsigned short int u_short;

typedef unsigned int __u_int;

typedef unsigned long int __u_long;

7 "demo.c"

int main ()
{
int a, b, c;
a = 10;
b =a + 20;
c =a * b;
printf("c = %d\n", c);
exit(0);
}

Compiling

This needs invoking gcc with the =S flag. A file with extension .s is generated.

$ gcc -S demo.i
$ cat demo.s

.file "demo.c"
.text
.section .rodata
.LCO:
.string "c = %d\n"
.text
.globl main
) .type main, @function movl %heax, -4(%rbp)
main: movl -4(%rbp), %eax
.LFB6: ' movl %heax, hesi
.cfi_startproc leaq .LCO(%rip), %rdi
endbr64 movl $0, Y%eax
pushq %rbp

call printf@PLT
movl $0, Yedi
call exit@PLT
.cfi_endproc

.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, hrbp
.cfi_def_cfa_register 6

subq $16, %rsp é"

movl $10, -12(%rbp) - -
movl -12(%rbp), %eax

addl $20, %eax

movl Yeax, ~BCtzvp) PLT means Procedure Linkage Table.

mov. - A4 p » h€ax . . .

imull -8(Yrbp), ‘eax) These functions are for runtime loading.

Assembling

e The assembler is called as.

e The symbols in object files are listed by nm.

$ as demo.s -o demo.o
$ nm demo.o

U exit

U _GLOBAL_OFFSET_TABLE_
0000000000000000 T main

U printf

e printf and exit are undefined in this object file.

e This is done by /d.
o This requires many libraries and is complicated.

e gcc does it transparently for you.

$ gcc demo.o
$./a.out

c = 300

$ nm a.out

e You get a big list of defined symbols.

e printf and exit are still left undefined.

U exit@QGLIBC_2.2.5

U printf@Q@GLIBC_2.2.5

Runtime loading

e printf and exit are loaded from shared object(s) during runtime.

$ 1dd a.out
linux-vdso.so.1 (0x00007ffe80££2000)
libc.so.6 => /1ib/x86_64-1linux-gnu/libc.so.6 (0x00007£98b5e19000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007£98b602d000)

e |f you want these functions to be in your executable, compile with the —static flag.
e This creates a huge a.out.

e You can see printf and exit defined in the executable.

$ gcc -static demo.o
$ 1ldd a.out

not a dynamic executable
$ nm a.out | grep printf

0000000000410bb0 T printf

Multi-file Applications

Abhijit Das
Pralay Mitra

Break your code across multiple files

Modular programming is a good practice, and is needed in any large coding project.

Large source files take huge time for recompilation.

If the code is broken down in pieces, then only the pieces that are changed need recompilation.

Large software development is a two-stage process.

o Generate object files from individual modules.
o Merge the object files into a single executable file.

Sometimes object files are combined in the form of libraries.

User programs can use the functions archived in libraries during future developments.

Staque: A multi-file stack-queue application

o We build linked-list implementations of the stack and queue data structures.
o We write the following files.

defs.h Defines a node data type.
stack.h Defines the stack data type and the stack function prototypes.
queue.h Defines the queue data type and the queue function prototypes.
stack.c The implementations of the stack functions.
queue.c The implementations of the queue functions.
staquecheck.c A sample application with the main function.

The header file defs.h

e Both stacks and queues use nodes defined as follows.

typedef struct _node {
int data;
struct _node *next;
} node;

typedef node *nodep;

o Write these data-type definitions in defs.h.

The header file stack.h

typedef nodep stack; // Pointer to the beginning of the linked list
stack initstack () ; // Create a new empty stack
int emptystack (stack) ; // Check whether the input stack is empty
int top (stack) ; // Return the top of a stack (if non-empty)
stack push (stack , int) ; // Push an integer to a stack
stack pop (stack) ; // Pop from a (non-empty) stack
void printstack (stack) ; // Print the elements of a stack from top to bottom
stack destroystack (stack) ; // Delete all the nodes from a stack

v,

The header file queue.h

typedef struct {
nodep front; // Pointer to the beginning of the linked list
nodep back; // Pointer to the end of the linked list
} queue;
queue initqueue () ; // Create a new empty queue
int emptyqueue (queue) ; // Check whether a queue is empty
int front (queue) ; // Return the element at the front of a queue (if non-empty)
queue enqueue (queue , int) ; // Insert an integer at the front of a queue
queue dequeue (queue) ; // Delete an element from the back of a (non-empty) queue
void printqueue (queue) ; // Print the elements of a queue from front to back
queue destroyqueue (queue) ; // Delete all the nodes from a queue
. >

The file stac

#include <stdio.h>
#include <stdlib.h>
#include "defs.h"
#include "stack.h"

stack initstack ()

{
stack S;
S = (stack)malloc(sizeof (node));
S -> data = 0; S -> next = NULL;
return S;
}
stack destroystack (stack S)
{
node *p;
while (S) {
P =S; S =85 -> next; free(p);
T
return NULL;
}

The file queue.c

#include <stdio.h>
#include <stdlib.h>
#include "defs.h"
#include "queue.h"

queue initqueue ()
{
queue Q;
node *p;
p = (node *)malloc(sizeof (node));
p —> data = 0;
p —> next = NULL;
Q.front = Q.back = p;
return Q;

}

queue destroyqueue (queue Q)
{
node *p;
while (Q.front) {
p = Q.front;
Q.front = (Q.front) -> next;
free(p);
¥
Q.front = Q.back = NULL;
return Q;

The application staquecheck.c

#include <stdio.h>
#include <stdlib.h>
#include "defs.h"

#include "stack.h"
#include "queue.h"

#define ITER_CNT 10

int main ()
{
stack S;
queue Q;
int i;
S = initstack();
for (i=0; i<ITER_CNT; ++i) { S = push(S, rand() % 100); printstack(S); }
S = destroystack(S);

Q = initqueue();
for (i=0; i<ITER_CNT; ++i) { Q = enqueue(Q, rand() % 100); printqueue(Q); }
Q = destroyqueue(Q);

exit(0);

Compile in one shot

$ gcc -Wall staquecheck.c stack.c queue.c

$ 1s -1

total 48

-rwxr-xr-x 1 abhij abhij 17640 Dec 23 20:40 a.out
-rw-r--r-- 1 abhij abhij 152 Dec 23 19:43 defs.h
-rw-r--r-- 1 abhij abhij 1262 Dec 23 19:45 queue.c
-rw-r--r-- 1 abhij abhij 360 Dec 23 19:43 queue.h
-rw-r--r-- 1 abhij abhij 1098 Dec 23 19:45 stack.c
-rw-r--r-- 1 abhij abhij 315 Dec 23 19:43 stack.h
-rw-r--r-- 1 abhij abhij 983 Dec 23 20:34 staquecheck.c
$./a.out

$

e The option -wall generates most of the relevant warning messages.

e Instead of a. out, you can generate an executable file of any name by the -o option.

$ gcc -Wall -o myapp staquecheck.c stack.c queue.c
$./myapp J

o Never forget an executable name after —o. Writing the C source file name after —o will replace
the file.

ating individual object files

e Compile using the -c option.
o Does not require a main function.

e This does not generate an executable file (even if main is there).

$ gcc -Wall -c stack.c
$ gcc -Wall -c queue.c
$ gcc -Wall -o myapp staquecheck.c stack.o queue.o

$1s -1

-rw-r--r-- 1 abhij abhij 152 Dec 23 19:43 defs.h
-rwxr-xr-x 1 abhij abhij 17640 Dec 23 21:01 myapp
-rw-r--r-- 1 abhij abhij 1262 Dec 23 19:45 queue.c
-rw-r—-r-- 1 abhij abhij 360 Dec 23 19:43 queue.h
-rw-r--r-- 1 abhij abhij 3424 Dec 23 21:01 queue.o
-rw-r--r-- 1 abhij abhij 1098 Dec 23 19:45 stack.c
-rw-r--r-- 1 abhij abhij 315 Dec 23 19:43 stack.h
-rw-r--r-- 1 abhij abhij 3248 Dec 23 21:01 stack.o
-rw-r—-r-- 1 abhij abhij 983 Dec 23 20:34 staquecheck.c

$./myapp

$

Difference between #include <. . .> and #include ". . ."

e There are default (system-dependent) directories for C header files.

e /ustfinclude
e /usr/local/include

o Header files residing in non-default directories should be included by the #include "..."
directive.

o You can add to the list of default include directories by the -I option.

$ gcc -Wall -c -I. stack.c
$ gcc -Wall -c -I. queue.c
$ gcc -Wall -o myapp -I. staquecheck.c stack.o queue.o

e These compilations add the current directory to the list of include directories.

e You can now Use #include <defs.h>, #include <stack.h>, and #include <queue.h>
in the source codes.

The environment variable C_INCLUDE_PATH

e You can avoid the -1 flag if you set C_INCLUDE_PATH.

e Multiple directories can be added as a colon-separated list DIR1:DIR2:DIRS:. . .
e . (the current directory) can be one of these directories.

e In bourne shell, this can be done as:

$ export C_INCLUDE_PATH=".:/home/foobar/include:/opt/users/foobar/include"
$)

e C shell users should do this:

% setenv C_INCLUDE_PATH ".:/home/foobar/include:/opt/users/foobar/include"
% J

How to Create Libraries

Abhijit Das
Pralay Mitra

Introduction

A library is a pre-compiled archive of object files.

These can be linked to user codes during compilation or during runtime.

Example: The math library consists of the following.
1. Data types: float, double, .. .
2. Functions: pow, sqrt, atan, cosh, abs, . . .
3. Constants: M_PI, M_E, M_LOG2E, M_SQRT?2, . ..
4, A precompiled archive of implementations of the math functions.

You only need the first three items during compilation.

This is achieved by #include <math.h>.

The precompiled math library (ltem 4) is needed for linking to your final executable.

You specify the option -1m for this linking.

Types of libraries

Static libraries

o Prefix: lib

e Extension: .a

e The static math library has the name libm.a

o Functions from static libraries are inserted in the executable during linking

Shared (or dynamic) libraries

e Prefix: lib
Extension: .so (may be followed by . and a version number)

The shared math library has the name libm.so
Functions from shared libraries are not inserted in the executable during linking

The functions are read from the .so objects during runtime

Building the static staque library

We have the files defs.h, stack.h, queue.h, stack.c, and queue.c as before.

We want to build the static library libstaque.a. This will contain all the stack and queue
functions as listed earlier.

The library is not meant to contain any main function.

Application programs like staquecheck.c will contain the main functions as needed.

Compile individual source files with the —c option to generate the object files.

Combine the object files into an archive libstaque.a using the command ar.

Generate libstaque.a

$ gcc -Wall -c stack.c
$ gcc -Wall -c queue.c
$ ar rcs libstaque.a stack.o queue.o

$1s -1

-rw-r—--r-- 1 abhij abhij 152 Dec 23 19:43 defs.h
-rw-r--r-— 1 abhij abhij 7046 Dec 24 18:25 libstaque.a
-rw-r--r-- 1 abhij abhij 1262 Dec 23 19:45 queue.c
-rw-r--r-- 1 abhij abhij 360 Dec 23 19:43 queue.h
-rw-r—-r-- 1 abhij abhij 3424 Dec 24 18:23 queue.o
-rw-r--r-- 1 abhij abhij 1098 Dec 23 19:45 stack.c
-rw-r--r-- 1 abhij abhij 315 Dec 23 19:43 stack.h
-rw-r—--r-- 1 abhij abhij 3248 Dec 24 18:23 stack.o
-rw-r--r-- 1 abhij abhij 144 Dec 23 19:43 staque.h

$

What is there in libstaque.a

$ nm libstaque.a
stack.o:

00000000000001c9
0000000000000036

0000000000000000
00000000000000£4
000000000000016a

00000000000000a8

0000000000000055

HaacaHHaHaHaaaAdA

destroystack
emptystack
free

furite
_GLOBAL_OFFSET_TABLE_
initstack
malloc

12012

printf
printstack
push

putchar
stderr

top

queue.o:

0000000000000144
0000000000000242
000000000000004a
00000000000000dd

0000000000000076

0000000000000000

00000000000001d6

dequeue
destroyqueue
emptyqueue
enqueue

free

front

furite
_GLOBAL_OFFSET_TABLE_
initqueue
malloc
printf
printqueue
putchar
stderr

How to use the libr

o To compile the application program staquecheck.c as given earlier.
e Include the header files defs.h, stack.h, and queue.h.

o A straightforward compilation fails.

$ gcc -Wall staquecheck.c

/usr/bin/ld: /tmp/ccIr2q5J.o: in function ‘main’:

staquecheck.c: (.text+0x12): undefined reference to ‘initstack’

/usr/bin/1ld: staquecheck.c:(.text+0x57): undefined reference to ‘push’
/usr/bin/1d: staquecheck.c:(.text+0x67): undefined reference to ‘printstack’
/usr/bin/ld: staquecheck.c: (.text+0x7d): undefined reference to ‘destroystack’
/usr/bin/1ld: staquecheck.c: (.text+0x8b): undefined reference to ‘initqueue’
/usr/bin/1d: staquecheck.c: (.text+0xdb): undefined reference to ‘enqueue’
(
(
d

O o0 o000

/usr/bin/1d: staquecheck. .text+0xf6) : undefined reference to ‘printqueue’
/usr/bin/1d: staquecheck.c: (.text+0x113): undefined reference to ‘destroyqueue’
collect2: error: 1d returned 1 exit status

$

How to link the library

e Like —Im, you should compile with —Istaque.

$ gcc -Wall staquecheck.c -lstaque
/usr/bin/1d: cannot find -1lstaque
collect2: error: 1d returned 1 exit status

$

o The linker Id does not look in the current directory for searching libraries.
e The —L option advises the linker to add directories to the library path.

$ gcc -Wall -L. staquecheck.c -lstaque

$ 1s -1

-rwxr-xr-x 1 abhij abhij 17536 Dec 24 18:52 a.out
-rw-r--r-- 1 abhij abhij 152 Dec 23 19:43 defs.h
-rw-r--r-- 1 abhij abhij 7046 Dec 24 18:25 libstaque.a
-rw-r--r-- 1 abhij abhij 1262 Dec 23 19:45 queue.c
-rw-r--r-- 1 abhij abhij 360 Dec 23 19:43 queue.h
-rw-r--r-- 1 abhij abhij 3424 Dec 24 18:23 queue.o
-rw-r--r-- 1 abhij abhij 1098 Dec 23 19:45 stack.c
-rw-r--r-- 1 abhij abhij 315 Dec 23 19:43 stack.h
-rw-r--r-- 1 abhij abhij 3248 Dec 24 18:23 stack.o
-rw-r--r-- 1 abhij abhij 473 Dec 24 18:52 staquecheck.c
-rw-r--r-- 1 abhij abhij 144 Dec 23 19:43 staque.h

$

How to avoid -L?

e You do not need —L for —Im, but why now?

e This is because the math library resides in a standard library directory.
e /ust/lib
e /usr/localllib
o /usr/lib/x86 _64-linux-gnu/

o If you copy libstaque.a to a standard directory, you do not need -L.
o Also, your application programs can be anywhere in the file system.

e This needs superuser privilege.

$ rm a.out

$ sudo cp libstaque.a /usr/local/lib/

[sudo] password for abhij:

$ gcc -Wall staquecheck.c -lstaque

$1s -1

-rwxr-xr-x 1 abhij abhij 17536 Dec 24 19:07 a.out

What about the header files?

The header files may reside in a default directory.

e Any application can #include < - - - > them without /.
e The application programs do not need to know where the header files are.

There are standard header directories.

e /ust/include
o /ustr/local/include

A user with superuser privileges can copy the header files to one of these directories.

Using subdirectories is a good option.

Installing the libstaque headers

o Write an outer wrapper staque.h.

#include <staque/stack.h>

#include <staque/defs.h>
#include <staque/queue.h>

e Run the following commands.

$ sudo mkdir /usr/include/staque
$ sudo cp defs.h stack.h queue.h /usr/include/staque
$ sudo cp staque.h /usr/include

$

e Subsequently, any application program may only #include <staque.h>.

o The three required header files are in turn included by this.

The keyword extern

e The functions declared in the header files are not implemented by your code.
e These functions are implemented in external library/libraries.

o The key word extern directs the compiler to wait for these implementations.

The header file queue.h

extern queue initqueue () ;

extern int emptyqueue (queue) ;
extern int front (queue) ;

extern queue enqueue (queue , int) ;
extern queue dequeue (queue) ;
extern void printqueue (queue) ;
extern queue destroyqueue (queue) ;

Building the shared staque library

e We again need only the files defs.h, stack.h, queue.h, stack.c, and queue.c.

o We plan to generate libstaque.so.

o Compile individual source files with the —¢ option to generate the object files.
o Use the option —fPIC to generate position-independent codes.

o Combine the objects into the shared library using gcc —shared.

$ gcc -Wall -fPIC -c stack.c

$ gcc -Wall -fPIC -c queue.c

$ gcc -shared -o libstaque.so stack.o queue.o

$1s -1

-rwxr-xr-x 1 abhij abhij 16928 Dec 24 20:51 libstaque.so
$

e Youcannm libstaque.so to find all the defined and undefined symbols.

How to link libstaque.so?

o The linker is not supposed to link the stack and queue functions to applications.
o These functions will be read from libstaque.so during runtime.
e Again you need the —L option to add the path of the library.

e Ifyou (in the superuser mode) copy libstaque.so to a system directory, then you do not need L.

$ sudo cp libstaque.so /usr/local/lib/

$ gcc -Wall staquecheck.c -lstaque

$ 1s -1

-rwxr-xr-x 1 abhij abhij 17064 Dec 24 21:05 a.out

Libstaque functions are undefined in your a.out

$ nm a.out | grep " U "

destroyqueue
destroystack

enqueue
exit@eGLIBC_2.2.5
initqueue

initstack
__libc_start_main@eGLIBC_2.2.5
printqueue
printstack

push
putchar@eGLIBC_2.2.5
rand@@GLIBC_2.2.5

cdcodddacdcdacdaadcaacqa

Good, but you still (perhaps) cannot run your a.out.

$./a.out
./a.out: error while loading shared libraries: libstaque.so: cannot open shared object file: No such file
or directory
$ 1dd a.out
linux-vdso.so.1 (0x00007ffd0b250000)
libstaque.so => not found
libc.so.6 => /1ib/x86_64-1linux-gnu/libc.so.6 (0x00007£fb539500000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007£b539714000)

Set the runtime library path

e You need to set the environment variable LD_LIBRARY_PATH.

o If you use the bourne shell, do this:

$ export LD_LIBRARY_PATH=/usr/local/lib)

o |f you use the C shell, do this:

% setenv LD_LIBRARY_PATH /usr/local/lib J

e Now, check whether libstaque.so is found.

$ 1dd a.out
linux-vdso.so.1 (0x00007ffe643b1000)
libstaque.so => /usr/local/lib/libstaque.so (0x00007£780a59e000)
libc.so.6 => /1ib/x86_64-1linux-gnu/libc.so.6 (0x00007£780a391000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007£780a5aa000)

e Go ahead, and run your a.out. No complaints from anybody.

Some Compile-time Options

Abhijit Das
Pralay Mitra

Some useful gcc options

-W

-Wall includes the following (among others). Some of these have many
subcategories.

-Wcomment Warn about nested comments.
-Wformat Warn about type mismatches in scanf and printf.
-Wunused Warn about unused variables.
-Wimplicit Warn about functions used before declaration.
-Wreturn-type Warn about returning void for functions with non-void return values.
-Wall does not include the following (among others).
—-Weconversion Warn about implicit type conversions.
—-Wshadow Warn about shadowed variables.
—Werror Convert warnings to errors.

Some useful gcc options (contd.)

—-g Add debugging information in the executable and object files.
-pg Compile for profiling.
-0 Set the optimization level.

—-00 No optimization (default behavior, useful when debugging).

-01,-02, -03 Various levels of optimization. Optimization is time-consuming, and
can be used only during the last stages of development.

—-Os Optimize (reduce) the size of the code.
-v Verbose mode of compilation.
——help Print help message for usage.

——version Print the gcc version.

The C Preprocessor

Abhijit Das
Pralay Mitra

The C preprocessor

The C preprocessor has the name cpp.

This has two basic jobs.

o Insert the #include’d files into your code.
e Processing the macros.

Macros can be defined in two ways.

o Using #define in your code.
e By the command-line option -D.

Checking whether a macro is defined or not is possible.

Macros can be parameterized.

Macros used as flags

#define MACRONAME Define the macro MACRONAME.
#undef MACRONAME Undefine the macro MACRONAME.
#ifdef MACRONAME |f MACRONAME is defined.
#ifndef MACRONAME If MACRONAME is not defined.
#else The beginning of the else block of an #ifdef or an #ifndef.

#endif The end of the conditional code.

Example of macros used as flags

The file macros.c

#include <stdio.h>
#include <stdlib.h>

#define MYFLAG $ gcc -Wall macros.c
$./a.out
int main () MYFLAG is defined
{ MYFLAG is undefined here
#ifdef MYFLAG $

printf ("MYFLAG is defined\n");
#undef MYFLAG

#else Remove #define MyFLAG from macros.c.
printf ("MYFLAG is not defined\n");
#endif $ gcc -Wall macros.c
$./a.out
#ifndef MYFLAG MYFLAG is not defined
printf ("MYFLAG is undefined here\n"); MYFLAG is undefined here
#else $
printf ("MYFLAG is still defined here\n");
#endif
exit(0);

Redefine MYFLAG from command line

$ gcc -Wall -DMYFLAG macros.c
$./a.out

MYFLAG is defined

MYFLAG is undefined here

$

$ cpp -DMYFLAG macros.c

int main ()

{
printf ("MYFLAG is defined\n");
printf ("MYFLAG is undefined here\n");
exit(0);

}

$

o Defining macros using -D offers compilation-time flexibility.
e You compile your assignments with -DDIAGNOSTIC.
e Your TA does not require the diagnostic messages, and compiles without this flag.

e On the flip side, some programs may refuse to compile without macros defined.

Use of macros as flags

o Conditional execution with diagnostic messages (helpful during development).

e Protecting parts of code. The following header file can be #include’s multiple times. The flag
prevents the stack data type and the function prototypes from getting declared multiple times.

The header file stack.h

#ifndef __LIBSTAQUE_STACK_H
#define __LIBSTAQUE_STACK_H

typedef nodep stack;

extern stack initstack () ;

extern int emptystack (stack) ;
extern int top (stack) ;

extern stack push (stack , int) ;
extern stack pop (stack) ;

extern void printstack (stack) ;
extern stack destroystack (stack) ;

#endif

Use of macros as values for substitution

The file macroval.c

#include <stdio.h>
#include <stdlib.h>

#define EXPR1 100
#define EXPR2 10 * 10

int main ()

{
if (EXPR1 == EXPR2) printf("EXPR1 is equal to EXPR2\n");
else printf("EXPR1 is not equal to EXPR2\n");
if (EXPR1 == EXPR3) printf("EXPR1 is equal to EXPR3\n");
else printf("EXPR1 is not equal to EXPR3\n");
if (EXPR1 == EXPR4 * EXPR4) printf("EXPR1 is equal to EXPR4 * EXPR4\n");
else printf("EXPR1 is not equal to EXPR4 * EXPR4\n");
exit(0);
}

e This program cannot compile as such, because EXPR3 and EXPR4 are not defined.

o We define these macros by the —D option.

Examples of macros as values for substitution

$ gcc -Wall -DEXPR3="50 + 50" -DEXPR4="5 + 5" macroval.c
$./a.out

EXPR1 is equal to EXPR2

EXPR1 is equal to EXPR3

EXPR1 is not equal to EXPR4 * EXPR4

$

e Macros are literally substituted by the C preprocessor.
e Macros are not evaluated before the substitution.
e EXPR4 * EXPR4 is substituted as 5 + 5 * 5 + 5 which evaluates to 35 (not 100).

$ cpp -DEXPR3="50 + 50" -DEXPR4="5 + 5" macroval.c

int main ()

{
if (100 == 10 * 10) printf("EXPR1 is equal to EXPR2\n");
else printf("EXPR1 is not equal to EXPR2\n");
if (100 == 50 + 50) printf("EXPR1 is equal to EXPR3\n");
else printf("EXPR1 is not equal to EXPR3\n");
if (100 == 5 + 5 x 5 + 5) printf("EXPR1 is equal to EXPR4 * EXPR4\n");
else printf("EXPR1 is not equal to EXPR4 * EXPR4\n");
exit(0);

}

$

Quoting strings with -D

The file macrostr.c

#include <stdio.h>
#include <stdlib.h>

int main ()

{
printf ("Welcome %s\n", MYNAME);
exit(0);

$ gcc -DMYNAME=’"Sad Tijihba"’ macrostr.c
$./a.out

Welcome Sad Tijihba

$ cpp -DMYNAME=’"Sad Tijihba"’ macrostr.c

$ gcc -DMYNAME="Sad Tijihba" macrostr.c
Many error messages

$ cpp -DMYNAME="Sad Tijihba" macrostr.c
znt main () int main O
printf ("Welcome %s\n", Sad Tijihba); t

3 n o " n 144 "y .
exit (0) ; printf ("Welcome %s\n", "Sad Tijihba");

exit (0);

@ Y

©“ Y

CS29206 Systems Programming Laboratory
Spring 2024

Parameters and Return Value of main()

Abhijit Das
Pralay Mitra

Talking with the shell

You run your compiled executable (like a.out) from the shell.

You may add one or more command-line arguments.

These arguments should somehow go to your C program.

When the program finishes execution, it should return something to the shell.

e The return value conventionally indicates successful/unsuccessful termination.

The fully decorated main() function

int main (int argc, char *argv[])

The shell talks to your program

e argc is the count of arguments including the program name (like ./a.out).

argv is a null-terminated array of strings storing the command-line arguments.

Each argument is a string.

Use the library functions atoi, atol, atof, . . . (defined in stdlib.h) to convert arguments to int,
long int, double,

For example, if you run ./a.out 2022 -name "Sad Tijihba" 6.32, then we have
® argc=5,
® argv[0] ="./a.out",
® argv[1] = "2022",
® argv[2] = "-name",
® argv[3] = "Sad Tijihba",
e argv([4] = "6.32", and
e argv([5] = NULL.

Your program talks to the shell

The return type of main is int.

You use return or exit() to pass a value to the shell.

Only an integer value can be returned.

Conventionally, the return value is an indicator whether the program completed successfully or
not.

0 means successful termination.

Any non-zero return value means unsuccessful termination.

mple chat

#include <stdio.h>
#include <stdlib.h>
int main (int argc, char *argv[])
{
int ¢, d, r, x, y, t1, t2, t3;
char s1, s2, s3;
if (arge != 6) {
fprintf (stderr, "#*x Incorrect number of arguments\n");
exit(1);
T
c = atoi(argv[1]); d = atoi(argv[2]); r = atoi(argv[3]);
x = atoi(argv[4]); y = atoi(argv[5]);
tl = -2%xc; s1 = (t1 >=0) ? ’+> : ’=2; if (t1 < 0) tl = -t1;
t2 = -2xd; s2 = (£2 >=0) ? ’+> : ’=?; if (2 < 0) t2 = -t2;
t3 = c*c + dxd - r*r; s3 = (t3 >=0) ? ’+’ : ’-’; if (t3 < 0) t3 = -t3;
printf("The equation of the circle: x72 + y~2 Yc %dx %c %dy %c %d = O\n", s1, tl, s2, t2, s3, t3);
if ((x - c) * (x -c) + (y-4d) * (y -d) <=r xr) printf("(%d,%d) is inside the circle\n", x, y);
else printf("(%d,%d) is outside the circle\n", x, y);
exit(0);
}

A chat transcript

$ gcc -Wall -o circle circle.c

$./circle 1 234 5

The equation of the circle: x72 + y°2 - 2x - 4y - 4 = 0
(4,5) is outside the circle

$ echo $7

0

$./circle 2 4315

The equation of the circle: x"2 + y°2 - 4x - 8y + 11 = 0
(1,5) is inside the circle

$ echo $7

0

$./circle 1 2 3 4

*** Incorrect number of arguments

$ echo $7

1

$ echo $7

0

$

Note: You will not understand now what the shell does with the values returned by exit (). Wait until
you gain familiarity with the shell.

Practice exercises

1. Suppose that a C file myfile.c uses a function myfunc () that is defined in a static library 1ibfunc.a. What new
files will be created, if any, if the following command is executed? Assume that the library path is set correctly.

gcc -lfunc myfile.c -o outfile

2. An application program mathapp.c needs two libraries 1ibalgebra.so and libgeometry.so. Each of these
libraries uses a library 1ibarithmetic.so. Moreover, 1ibalgebra.so additionally uses 1ibbasicmath.so. Fi-
nally, Libarithmetic.so and libbasicmath.so use the standard math library 1ibm. so. Assume that the runtime
library path is appropriately set so that all these libraries can be located by the compiler and the runtime linker. Show
how you can compile mathapp. c.

3. Two C files file1l.c and file2.c are to be compiled to form an executable file outfile. Both the files use a
static library 1ibgraph.a stored in the directory /home/foobar/graph/1ib and a static library 1ibstring.a
stored in the directory /home/foobar/strings/1ib. In order to access libgraph.a and libstring.a prop-
erly, the C files also need to include some header files stored in the directories /home/foobar/graph/include and
/home/foobar/strings/include. All the header files are to be accessed from the C files using #include <...>
format. Write a single gcc command to do this.

4. Repeat the last exercise assuming that the shared libraries 1ibgraph.so and libstring.so are available in the
directory mentioned. Set LD_LIBRARY_PATH, and then use a single gcc command.

Practice exercises

5. Copy the shared library 1ibstaque. so (see the slides) to a non-system directory /home/foobar/personal/lib.
The environment variable LD_LIBRARY_PATH is not set to include this directory. You have an application program
dfsbfs.c in the directory /home/foobar/algolab, that uses the stack and queue functions of the staque li-
brary. Figure out what extra compilation-time option you should supply to gcc so that 1dd a.out shows that
libstaque.so is available in the directory /home/foobar/personal/lib and the runtime linker does not need
setting the LD_LIBRARY_PATH.

6. You are currently in the directory /home/userx/foobar. This directory contains three subdirectories include, foo,
and bar. The subdirectory include contains three header files common. h, foo.h and bar . h. The subdirectory foo
contains three source files foo1.c, foo2.c, and foo3. c, whereas the subdirectory bar contains two source files
barl.c and bar2.c. The foo source files require the header files common.h and foo.h, whereas the bar source
files require the header files common.h and bar.h. The required header files are included in the source file in the
format #include "../include/...". The five source files are to compiled to a single foobar library. Describe
how you can do this in the following two cases: (i) you want a static library 1ibfoobar . a, (i) you want a dynamic
library 1ibfoobar. so. These libraries should be built in your current directory /home/userx/foobar.

Practice exercises

7. A number-theory library and application programs using that library need an array of the primes < 20. So you plan
to use an int array storing these numbers in a header file for the library. However, header files are not the right place
for declaring global variables and arrays. Figure out what problem(s) you face if you have the following line in the
header file. What is the reason behind the problem(s)?

int SMALLPRIMES = { 2, 3, 5, 7, 11, 13, 17, 19 };

How can you overcome the problem(s)? You need to have this array in the header file both during the compilation of
the library and during the compilation of the application programs that use the library.

8. Consider the following program fragment.

unsigned short s;

int i, j;

scanf ("%d%d", &i, &j);
s=1i/ j;

printf ("%hu\n", s);

There is an obvious problem with this program. Find it, and show the gcc compilation options such that
(i) gee will only warn about the problem during compilation,
(if) gec will give an error and not compile the program.

Practice exercises

9. Suppose that your C program has the following diagnostic printf statements.

printf("++: ...");
printf("+: ...");

printf("++: ...");
printf ("+++: ...");

The printf starting with a single + is always to be printed. The printf’'s starting with only two + are printed if the user
wants verbose output. The printf’'s starting with two and three + are printed if the user wants very verbose output.
The user decides during compilation time whether (s)he uses the normal or the verbose or the very verbose mode.
Modify the above code (without deleting any printf and without using any extra variables) so that the user can select
the printing mode using appropriate compilation options. Show both the modified code and the compilation options.

10. Consider the following C program with undefined symbols N and A.

int main ()
{
int cnt = N, i, arr[N] = A;
for (i=0; i<cnt; ++i) printf("%d\n", arr([i]);

}

How can you define ¥ and A as macros during compilation so that gcc successfully compiles the file?

