
CS29206 Systems Programming Laboratory

Spring 2024

Introduction to gawk

Abhijit Das

Pralay Mitra

The Unix command awk

• Named after the designers Alfred V. Aho, Peter J. Weinberger, and Brian W. Kernighan

• We discuss the GNU version gawk

• awk is a full-fledged programming language

• Before the advent of Perl, awk used to be the most powerful pattern processing language

• Run the command as

gawk <OPTIONS> ’COMMANDS’ <FILE(S)>

• If the commands are written in COMMANDFILE, run as

gawk <OPTIONS> -f COMMANDFILE <FILE(S)>

Records and fields

• awk reads the input file(s) line by line.

• Each line is called a record.

• Each record is split into fields.

• The default field separator is space or tab.

• You can specify your separator by running with the –F option.

gawk -F: ’COMMANDS’ <FILE(S)>

• The current record is accessed as $0.

• The individual fields are accessed as $1, $2, $3, . . .

An example file

Alamosaurus:sauropod:21::H:70-65:USA

Albertaceratops:ceratopsian:7::H:80-75:Canada, USA

Albertosaurus:large theropod:9:1500:C:76-74:Canada

Allosaurus:large theropod:12:2000:C:156-144:Portugal, USA

Ankylosaurus:armored dinosaur:7:4000:H:74-67:Canada, USA

Antarctosaurus:sauropod:18::H:84-65:Argentina, Chile, Uruguay

Apatosaurus:sauropod:21::H:154-145:USA

Aragosaurus:sauropod:18::H:132-121:Spain

Archaeopteryx:small theropod:0.5::C:147:Germany

Argentinosaurus:sauropod:35:70000:H:90:Argentina

Avaceratops:ceratopsian:2.3::H:80-75:USA

Bactrosaurus:euornithopod:6::H:84-71:China

Barapasaurus:sauropod:14::H:185-170:India

Barosaurus:sauropod:24::H:155-145:Tanzania, USA

Baryonyx:large theropod:10:2000:C:125:Spain, UK

Brachiosaurus:sauropod:30::H:155-140:Algeria, Portugal, Tanzania, USA

Carcharodontosaurus:large theropod:15::C:98-94:North Africa

Carnotaurus:large theropod:7.6::C:70:Argentina

Centrosaurus:ceratopsian:6:1000:H:76-74:Canada

Ceratosaurus:large theropod:6:970:C:153-148:Portugal, USA

Chindesaurus:small theropod:4::C:227-210:USA

Coelophysis:small theropod:2:27:C:225-190:South Africa, USA, Zimbabwe

Dacentrurus:armored dinosaur:6::H:154-150:France, Portugal, UK

Deinocheirus:large theropod:10::O:70-66:Mongolia

Deinonychus:small theropod:3:75:C:120-110:USA

Dilophosaurus:large theropod:6:300:C:190:USA

Diplodocus:sauropod:26:15000:H:155-145:USA

Edmontosaurus:euornithopod:13:3400:H:76-65:Canada

Gastonia:armored dinosaur:4.6::H:142-127:USA

Giganotosaurus:large theropod:12.5:8000:C:112-90:Argentina

An example file (continued)

Gobisaurus:armored dinosaur:5::H:121-99:China

Hadrosaurus:euornithopod:9::H:78-74:USA

Heterodontosaurus:euornithopod:1.2::H:205:Lesotho, South Africa

Iguanodon:euornithopod:10:4000:H:140-110:Belgium, UK

Indosuchus:large theropod:7::C:71-65:India

Isisaurus:sauropod:::H:71-65:India

Kentrosaurus:armored dinosaur:5::H:155-150:Tanzania

Kotasaurus:sauropod:9::H:205-190:India

Leptoceratops:ceratopsian:3::H:67-65:Canada, USA

Majungasaurus:large theropod:6::C:84-71:Madagascar

Megalosaurus:large theropod:9::C:170-155:UK

Microraptor:small theropod:0.8:1:C:125-122:China

Monolophosaurus:large theropod:5.7::C:180-159:China

Oviraptor:small theropod:2:20:O:85-75:Mongolia

Parasaurolophus:euornithopod:11:3500:H:76-74:Canada, USA

Patagosaurus:sauropod:18::H:164-159:Argentina

Pentaceratops:ceratopsian:6.8::H:76-74:USA

Plateosaurus:sauropod:7:4000:H:210:France, Germany, Switzerland

Protoceratops:ceratopsian:1.8:400:H:74-70:China, Mongolia

Riojasaurus:sauropod:5.15::O:221-210:Argentina

Scutellosaurus:armored dinosour:1.2::H:205-202:USA

Sinraptor:large theropod:7.6::C:169-142:China

Spinosaurus:large theropod:18:4000:C:95-70:Egypt, Morocco

Stegosaurus:armored dinosaur:9::H:155-145:USA

Tarbosaurus:large theropod:10::C:74-70:China, Mongolia

Thecodontosaurus:sauropod:2.5::O:227-205:UK

Triceratops:ceratopsian:9:5500:H:68-66:USA

Tyrannosaurus:large theropod:12:7000:C:68-66:Canada, USA

Utahraptor:large theropod:6:1000:C:112-100:USA

Velociraptor:small theropod:1.8:7:C:74-70:Mongolia

Barapasaurus Tagorei

An example record

• Consider the line

Indosuchus:large theropod:7::C:71-65:India

• Here : is used as the field separator.

• We have the strings stored in the following variables.

$0 = "Indosuchus:large theropod:7::C:71-65:India"

$1 = "Indosuchus"

$2 = "large theropod"

$3 = "7"

$4 = ""

$5 = "C"

$6 = "71-65"

$7 = "India"

The commands

• There is an optional BEGIN section that is executed before any record is read.

• This is followed by reading the records one by one, and performing actions driven by a set of
patterns.

• Finally, there is an optional END section that is executed after all records are read.

An awk program

BEGIN { Initial actions }
PATTERN1 { Action1 }
PATTERN2 { Action2 }
. . .

PATTERNn { Actionn }
END { Final actions }

• For each record, only those actions are taken for which the record matches the corresponding
patterns.

• The actions are taken in the sequence given in the program.

• An empty pattern matches every record.

A simple awk program

details.awk
BEGIN {

FS = ":"
print "Going to read the dinosaur database..."

}
{ print $1 }
{ print "\tType: " $2 }
{ print "\tLength: " $3 " meters" }
$4 == "" { print "\tWeight: Unknown" }
$4 != "" { print "\tWeight: " $4 " kilograms" }
$5 == "H" { print "\tDiet: Herbivorous" }
$5 == "C" { print "\tDiet: Carnivorous" }
$5 == "O" { print "\tDiet: Omnivorous" }
{ print "\tLived " $6 " million years ago" }
{

print "\tFossils found in" }
n = split($7, clist, ", ")
for (i=1; i<=n; ++i) { print "\t\t" clist[i] }

}
END { print "That is all I have. Bye..." }

Running this awk script

$ gawk -f details.awk dinosaurs.txt

Going to read the dinosaur database...

Alamosaurus

Type: sauropod

Length: 21 meters

Weight: Unknown

Diet: Herbivorous

Lived 70-65 million years ago

Fossils found in

USA

Albertaceratops

Type: ceratopsian

Length: 7 meters

Weight: Unknown

Diet: Herbivorous

Lived 80-75 million years ago

Fossils found in

Canada

USA

...

Velociraptor

Type: small theropod

Length: 1.8 meters

Weight: 7 kilograms

Diet: Carnivorous

Lived 74-70 million years ago

Fossils found in

Mongolia

That is all I have. Bye...

$

Doing all the record-processing actions as a single action

BEGIN {
FS = ":"
print "Going to read the dinosaur database..."

}
{

print $1
print "\tType: " $2
print "\tLength: " $3 " meters"
if ($4 == "") { print "\tWeight: Unknown" }
if ($4 != "") { print "\tWeight: " $4 " kilograms" }
if ($5 == "H") { print "\tDiet: Herbivorous" }
if ($5 == "C") { print "\tDiet: Carnivorous" }
if ($5 == "O") { print "\tDiet: Omnivorous" }
print "\tLived " $6 " million years ago"
print "\tFossils found in"
n = split($7, clist, ", ")
for (i=1; i<=n; ++i) { print "\t\t" clist[i] }

}
END { print "That is all I have. Bye..." }

Filtering by pattern matching

• The pattern can be any regular expression.

• Enclose the pattern by a pair of delimiters (usually /).

select.awk
BEGIN {

FS = ":"
nIndian = 0
nlarge = 0
nsmall = 0

}
{

if ($7 ~ /India/) { nIndian++; Indian[nIndian] = $1 }
if ($2 ~ /theropod/) {

if ($2 ~ /large/) { nlarge++; LT[nlarge] = $1 }
else { nsmall++; ST[nsmall] = $1 }

}
}
END {

print nIndian " dinosaurs found in India"
for (i=1; i<=nIndian; i++) print "\t" Indian[i]
print nlarge " large theropods:"
for (i=1; i<=nlarge; i++) print "\t" LT[i]
print nsmall " small theropods:"
for (i=1; i<=nsmall; i++) print "\t" ST[i]

}

Output of the selection program

$ gawk -f select.awk dinosaurs.txt

4 dinosaurs found in India

Barapasaurus

Indosuchus

Isisaurus

Kotasaurus

18 large theropods:

Albertosaurus

Allosaurus

Baryonyx

Carcharodontosaurus

Carnotaurus

Ceratosaurus

Deinocheirus

Dilophosaurus

Giganotosaurus

Indosuchus

Majungasaurus

...

Utahraptor

7 small theropods:

Archaeopteryx

Chindesaurus

Coelophysis

Deinonychus

Microraptor

Oviraptor

Velociraptor

$

Similarities with C

• awk syntax is quite similar to C syntax.

• Comparison operators: ==, !=, <, <=, >, >=.

• New operator: ~ (pattern matching) and !~ (pattern non-matching).

• Logical operators: &&, ||, and !.

• Arithmetic operators: +, -, *, /, %, ++, --.

• New operator: ** (exponentiation).

• Assignment operators: =, +=, -=, *=, /=, and %=.

• if and if else statements.

• while and for loops, break, and continue.

• printf and sprintf work exactly as in C.

Built-in variables

$0 The current record

$1,$2,$3,. . . The fields in the current record

RS The record separator (default: new line)

NR The number of the current record (1, 2, 3, . . .)

FS Field separator

NF The number of fields in the current record

FILENAME The name of the current file (NULL if the input is taken from stdin)

OFS Output field separator (default: space)

ORS Output record separator (default: new line)

Note: The print action without any argument prints the current record. OFS and ORS are used for this
printing.

Variables and arrays

• Variables are not needed to be declared before use.

• Numeric variables are automatically initialized to 0.

• String variables are automatically initialized to the empty string.

• Variables do not have fixed types.

• Strings and numbers are treated in a unified manner.

• If a string is used in a numerical context, it is automatically converted to a number if it is a
numeric string, or to 0 otherwise.

• A number is automatically converted to a numeric string (like during printing).

• Strings are compared with respect to the lexicographic ordering. For example, 9 < 10 (as
numbers), whereas "9" > "10" (even though both are numeric).

• Array indexing is 1-based.

Some new built-in functions

int(x) The integer part of x

length(s) Length of the string s

index(s,t) Index of the substring t in the string s (0 is t is not a substring of s)

substr(s,b,l) Substring of the string s beginning at index b and of length l

toupper(s) Copy of the string s converted to upper case

tolower(s) Copy of the string s converted to lower case

split(s,A,d) Split the string s with respect to the delimiter (a string again), and store the parts in
the array A. The number of parts obtained by splitting s (the size of A) is returned.

Example: Average length of sauropod dinosaurs in different periods

average.awk
{

if ($2 == "sauropod") {

pos = index($6,"-")

if (pos == 0) {

ts = te = int($6)

} else {

ts = int(substr($6, 1, pos-1))

te = int(substr($6, pos+1, length($6)-pos))

}

if ((ts <= 252) && (te >= 201)) { nt++; sumt += $3 }

else if ((ts <= 201) && (te >= 145)) { nj++; sumj += $3 }

else if ((ts <= 145) && (te >= 65)) { nc++; sumc += $3 }

else { printf("Period cannot be determined for %s (%d,%d)\n", $1, ts, te) }

}

}

END {

printf("Average lengths of sauropod dinosaurs\n")

printf(" Triassic period (252-201 Ma) : %6.2f meters\n", sumt / nt)

printf(" Jurassic period (201-145 Ma) : %6.2f meters\n", sumj / nj)

printf(" Cretaceous period (145-65 Ma) : %6.2f meters\n", sumc / nc)

}

$ gawk -F: -f average.awk dinosaurs.txt

Period cannot be determined for Brachiosaurus (155,140)

Period cannot be determined for Kotasaurus (205,190)

Average lengths of sauropod dinosaurs

Triassic period (252-201 Ma) : 4.88 meters

Jurassic period (201-145 Ma) : 20.60 meters

Cretaceous period (145-65 Ma) : 18.40 meters

$

Barapasaurus Tagorei

Associative arrays (or hashes)

• Arrays can be indexed by strings.

• The syntax is the same: Array[string]

• Here, string is not automatically converted to an integer index.

• Note: Array[5] and Array["5"] are different.

• Loops can be used on associative arrays as:

for (name in Array) {
Access entries as Array[name]

}

• Iterations are not in the sorted order of names.

Example: Country-wise listing of large theropod dinosaurs

Executable gawk script theropod.awk
#!/usr/bin/gawk -f

{

if ($2 == "large theropod") {

n = split($7, country, ", ");

for (i=1; i<=n; ++i) { tlist[country[i]] = tlist[country[i]] " " $1 }

}

}

END {

for (c in tlist) {

printf("%-15s: %s\n", c, tlist[c])

}

}

$./theropod.awk -F: dinosaurs.txt

USA : Allosaurus Ceratosaurus Dilophosaurus Tyrannosaurus Utahraptor

Morocco : Spinosaurus

Egypt : Spinosaurus

Mongolia : Deinocheirus Tarbosaurus

China : Monolophosaurus Sinraptor Tarbosaurus

UK : Baryonyx Megalosaurus

Spain : Baryonyx

Canada : Albertosaurus Tyrannosaurus

India : Indosuchus

North Africa : Carcharodontosaurus

Madagascar : Majungasaurus

Portugal : Allosaurus Ceratosaurus

Argentina : Carnotaurus Giganotosaurus

$

The environment variables

• The environment variables are available in the built-in associative array ENVIRON.

environ.awk
BEGIN {

for (name in ENVIRON) { printf("%s = %s\n", name, ENVIRON[name]) }
}

The output

$ gawk -f environ.awk
IM_CONFIG_PHASE = 1
DBUS_SESSION_BUS_ADDRESS = unix:path=/run/user/1000/bus
SHLVL = 2
GNOME_DESKTOP_SESSION_ID = this-is-deprecated
PWD = /home/foobar/spl/prog/awk
...
USER = foobar
DISPLAY = :0
AWKPATH = .:/usr/share/awk
...
$

User-defined functions and run-time user inputs

Fibonacci.awk
#!/usr/bin/gawk -f

function F (n)
{

if (n <= 1) { return n }
return F(n-1) + F(n-2)

}

BEGIN {
printf("Enter a positive integer: ")
getline n < "-"
n = int(n)
print "Fib(" n ") = " F(n)

}

Running the program

$./Fibonacci.awk
Enter a positive integer: 10
Fib(10) = 55
$./Fibonacci.awk
Enter a positive integer: 20
Fib(20) = 6765
$

Scope of variables

• All variables used are global.

• There is no provision for declaring local variables.

• Only the function parameters act as local variables.

• Parameter passing is by value only.

• If you want to use local variables in a function, do the following.

• Add your local variables to the list of parameters.

• You do not need to pass values to all the parameters.

• Any value not passed is initialized to 0 or the empty string.

All variables are global

nolocal.awk
#!/usr/bin/gawk -f

function oddsum (n)
{

print "oddsum(" n ") called"
sum = 0
term = 1
for (i=1; i<=n; ++i) {

sum += term
term += 2

}
return sum

}

BEGIN {
n = 10
sum = 0
for (i=1; i<=n; ++i) { sum += oddsum(i) }
print sum

}

• The output is 162.

• n is a local variable, but i and sum are global variables in oddsum().

What happens to i and sum

#!/usr/bin/gawk -f

function oddsum (n)

{

sum = 0

term = 1

for (i=1; i<=n; ++i) {

sum += term

term += 2

}

return sum

}

BEGIN {

n = 10

sum = 0

for (i=1; i<=n; ++i) {

print "Calling oddsum(" i ")"

sum += oddsum(i)

print "sum = " sum

}

print sum

}

Output
Calling oddsum(1)

sum = 2

Calling oddsum(3)

sum = 18

Calling oddsum(5)

sum = 50

Calling oddsum(7)

sum = 98

Calling oddsum(9)

sum = 162

Fixing the problem

#!/usr/bin/gawk -f

function oddsum (n, i, sum)

{

print "oddsum(" n ") called"

sum = 0

term = 1

for (i=1; i<=n; ++i) {

sum += term

term += 2

}

return sum

}

BEGIN {

n = 10

sum = 0

for (i=1; i<=n; ++i) { sum += oddsum(i) }

print sum

}

Output
oddsum(1) called

oddsum(2) called

oddsum(3) called

oddsum(4) called

oddsum(5) called

oddsum(6) called

oddsum(7) called

oddsum(8) called

oddsum(9) called

oddsum(10) called

385

Writing to files: Use redirection

avg.awk

#!/usr/bin/gawk -f

BEGIN { FS = ":" }

{
if ($2 == "sauropod") {

pos = index($6,"-")
if (pos == 0) {

ts = te = int($6)
} else {

ts = int(substr($6, 1, pos-1))
te = int(substr($6, pos+1, length($6)-pos))

}
if ((ts <= 252) && (te >= 201)) { nt++; sumt += $3 }
else if ((ts <= 201) && (te >= 145)) { nj++; sumj += $3 }
else if ((ts <= 145) && (te >= 65)) { nc++; sumc += $3 }
else printf("Period cannot be determined for %s (%d,%d)\n", $1, ts, te);

}
}

END {
printf("Average lengths of sauropod dinosaurs\n") > "avg.txt"
printf(" Triassic period (252-201 Ma) : %6.2f meters\n", sumt / nt) >> "avg.txt"
printf(" Jurassic period (201-145 Ma) : %6.2f meters\n", sumj / nj) >> "avg.txt"
printf(" Cretaceous period (145-65 Ma) : %6.2f meters\n", sumc / nc) >> "avg.txt"

}

The output

$./avg.awk dinosaurs.txt
Period cannot be determined for Brachiosaurus (155,140)
Period cannot be determined for Kotasaurus (205,190)
$ cat avg.txt
Average lengths of sauropod dinosaurs

Triassic period (252-201 Ma) : 4.88 meters
Jurassic period (201-145 Ma) : 20.60 meters
Cretaceous period (145-65 Ma) : 18.40 meters

$

Notes

• > means overwrite.

• >> means append.

• The mode is determined by the first print statement.

• After that, there is no distinction between > and >>.

• The output filename is to be quoted, otherwise this would be treated as a variable.

Practice exercises

The exercises on this page use the dinosaur database given in the slides.

1. The program average.awk discards the records of sauropod dinosaurs living across multiple periods. Modify the
program so that these records too are processed. For example, Kotasaurus lived in both the Triassic and the Jurassic
periods, so use Kotasaurus in the statistics of both these periods.

2. Modify the program theropod.awk so that the printing is sorted with respect to the country names.

3. Write a gawk program dinotypes.awk that categorizes the dinosaurs in respect of their types. It should print the
different types, and below each type, it should print the dinosaur names belonging to that type, one name in one line
beginning with a tab. After the printing for each type, the program should print the count of dinosaurs of that type.
For example, you should have a part of the output as follows.

ceratopsian:
Albertaceratops
Avaceratops
...
Triceratops

Total count = 7

4. Write a program sortsauropods.awk to print the sauropod dinosaurs along with their living times and lengths, sorted
with respect to the living times (earliest first). If there is a period (like 70–65 for Alamosaurus), use the average of the
two endpoints as the living date of that dinosaur (67.5 for Alamosaurus).

Practice exercises

5. Study the format of the file /etc/passwd. Write a gawk script to find all the non-system users. For Ubuntu, these
users have IDs > 1000 (but not “too large”).

6. Use the file /etc/passwd to let gawk categorize users with respect to their login shells.

7. A file foomarks.txt has the following format. The first line contains a single number (a positive integer) n standing
for the number of tests conducted in the course FOO. The second line contains the list of maximum marks for the n

tests. The third line contains the list of percentage contribution of the tests (it is the teacher’s duty to ensure that the
percentages add to 100). From the fourth line to the end, the file foomarks.txt stores the performance records of
students. Each line consists of the following fields: student name, student roll number, mark in test1, mark in test2,
. . . , mark in testn. Assume that all the students appeared for all the tests, so that all mark entries store numbers.
Assume that each mark is a non-negative integer. Write a gawk script computetotal.awk that computes the overall
performance of each student (in 100). Write the output to a file foototal.txt storing only student names, roll
numbers, and total marks. Use tab as the field separator in the both the input and the output files.

8. Repeat the last exercise with the following exception. A mark entry may be ABSENT, indicating that the student did
not appear for that test. Replace that string by 0 for calculating the total.

9. Repeat the last exercise with an additional exception. A mark entry may be GRANT indicating that the student was
absent in that test, but the absence is granted for some genuine reason. Use the marks of other tests and scale the
sum to 100 for calculating the totals in the presence of GRANT (and ABSENT).

Practice exercises

10. Write a gawk script foogrades.awk that reads the file foototal.txt produced by the last three exercises, and
prints the students in the decreasing order of their total marks. In case of a match in the total, sort in the ascending
order of roll numbers (unique for each student). The gawk script should also calculate the grade for each student
under the absolute grading scheme (EX for [90, 100], A for [80, 90), and so on). Rewrite the input file foototal.txt
by appending the grade of the student in each line.

11. Explain how gawk can process a csv file using comma as the separator and with strings double-quoted.

12. Write a gawk script listall.awk that reads a set of positive integers from the user, and prints the integers in the
sorted order. The reading loop stops when the user enters 0 or a negative integer. Implement the list using (a) an
array, and (b) an associative array. Duplicate entries by the user should be ignored.

13. Devise a scheme to store a binary min-heap (of positive integers) using the gawk programming language. Write the
functions init, heapify, insert, findmin, and deletemin for min-heaps.

14. Devise a scheme to store a binary search tree (of positive integers) using the gawk programming language. Write
the functions init, insert, search, and inorderprint for binary search trees.

15. A directed graph G is stored in a text file in the following format. The first line stores the number n of vertices, and the
second line the number m of edges. This is followed by m lines each storing u, v for an edge (u, v) of G (assume
that there are no duplicate entries for any edge). Write a gawk script that reads the graph file, reads two vertices
u, v from the user, and determines (and prints) whether there is a u-to-v path in the graph. Number the vertices as
1, 2, 3, . . . , n.

