
CS29206 Systems Programming Laboratory, Spring 2023–2024

Lab Test (Quiz)

08–April–2024 06:15pm–07:45pm Maximum marks: 60

Marks obtained (To be filled in by the examiners)

Q1 Q2 Q3 Q4 Q5 Q6 Total

Roll no: Name:

[Write in the respective spaces provided. Write syntactically correct codes (no credits for pseudocodes).]

1. Prof. Artim and Prof. Sad propose a new cryptographic cipher called SPLAS. It is based on a math library

that consists of three source files splnumarithmetic.c, splnumalgebra.c, and splnumalgorithms.c.

They have to be clubbed together in the form of a static library libsplnum.a. Based upon this math library,

the cipher library libsplas.so is to be built from splas.c. All the source files of the math library depend on

the basic data type splnum defined in splnum.h. Moreover, every source file has a header file with the same

name (but with the extension .h). These files are organized as follows (the files are listed alphabetically).

Before make After make

splas/

include/

splas.h

splnum.h

splnumalgebra.h

splnumalgorithms.h

splnumarithmetic.h

lib/

src/

cipher/

makefile

splas.c

makefile

numlib/

makefile

splnumalgebra.c

splnumalgorithms.c

splnumarithmetic.c

splas/

include/

splas.h

splnum.h

splnumalgebra.h

splnumalgorithms.h

splnumarithmetic.h

lib/

libsplas.so

libsplnum.a

src/

cipher/

makefile

splas.c

splas.o

makefile

numlib/

makefile

splnumalgebra.c

splnumalgebra.o

splnumalgorithms.c

splnumalgorithms.o

splnumarithmetic.c

splnumarithmetic.o

After the user calls make at the directory splas/src/, the object files and the libraries are created as

shown above on the right. Your task in this exercise is to write the three makefiles (in the directories

splas/src/, splas/src/cipher/, and splas/src/numlib/). Assume that the C source files use the format

#include <...> for including all header files. The compilation of the source files and the creation of the

libraries are handled by the makefiles in the directories splas/src/numlib/ and splas/src/cipher/ only.

The makefile in splas/src/ do recursive makes in the two subdirectories. The creation of libsplas.so

requires the other library libsplnum.a.

Also write clean targets in all the three makefiles. Like above, the cleaning is done only in the subdirectories

splas/src/numlib/ and splas/src/cipher/. The makefile in splas/src/ initiates recursive makes.

When the user enters make clean in the directory splas/src/, all the object files are removed, but the

library files created in the directory splas/lib/ are not deleted.

You do not have to write install and distclean targets. You also do not need to write any .c or .h file.

— Page 1 of 10 —

(a) Write the makefile in splas/src/. (5)

Solution

all:

cd numlib; make

cd cipher; make

clean:

cd numlib; make clean

cd cipher; make clean

(b) Write the makefile in splas/src/numlib/. (5)

Solution

SHELL := /bin/bash

CC := gcc

CFLAGS := -I../../include -Wall

LIBNAME := ../../lib/libsplnum.a

OBJS := splnumarithmetic.o splnumalgebra.o splnumalgorithms.o

LIBNAME: OBJS

ar rcs ${LIBNAME} ${OBJS}

OBJS: ../../include/splnum.h

splnumarithmetic.o: ../../include/splnumarithmetic.h

splnumalgebra.o: ../../include/splnumalgebra.h

splnumalgorithms.o: ../../include/splnumalgorithms.h

clean:

-rm -f ${OBJS}

— Page 2 of 10 —

(c) Write the makefile in splas/src/cipher/. (5)

Solution

SHELL := /bin/bash

CC := gcc

LIBNAME := ../../lib/libsplas.so

OBJ := splas.o

LIBNAME: OBJ

${CC} -Wall -fPIC -I../../include -L../../lib/ -c -o ${OBJ} splas.c -lsplnum

${CC} -shared -o ${LIBNAME} ${OBJ}

OBJ: ../../include/splas.h

clean:

-rm -f ${OBJ}

2. In a company database, the following employee details are stored sequentially in a text file empl.txt.

Age,First_Name Last_Name,Gender,Mobile_Number,PIN_code

The company does not store the information of joining date or year, but the company maintains a steady

growth by recruiting 20 employees each year. When a new employee joins, a line storing his/her records in

the format mentioned above is appended to the database file. Assume that as of now, none of the employees

has left the company for any reason.

For a performance evaluation, the board of directors of the company wishes to call all the female employees

of age 55, who joined the company from the 10-th to the 15-th year of the company’s recruitment and are

from IIT Kharagpur (PIN code 721302). Use a single line of Unix/Linux commands to print the records of

all such employees. Assume that the file empl.txt is available in the current directory. Do not use awk. (5)

Solution

head -300 empl.txt | tail -120 | grep ’ˆ55’ | grep ’721302$’ | grep ’,F,’

— Page 3 of 10 —

3. The Foo Operating System supplies a game barit. The game uses a secret array A with 106 int entries.

The array stores exactly 106 of the 106 + 1 integers 0,1,2, . . . ,106 without repetitions, and is sorted in the

ascending order. That is, exactly one integer s in the range [0,106] is missing in the array. The goal of the

player is to guess s. The array A and the secret s are stored in the kernel memory, and are not accessible to

the users. Only three system calls are provided as interfaces. The call initsecret(key) takes a string key

as an argument, and creates A and s based upon key. Subsequently, the user can call getelement(i) that

returns A[i] after a delay of one second. Finally, the user can verify the correctness of his/her guess t of s by

calling checksecret(t). The OS keeps track of how many times checksecret(t) is called against every

key supplied in the call initsecret(key). If exactly one call of checksecret(t) returns true within ten

minutes of calling initsecret(key), a mail is sent to the FooOS headquarters, and you can claim a reward

(a free six-month subscription to the popular game fooit). You cannot compile your C codes containing

the above system calls. Instead, FooOS supplies a gdb-enabled binary file barit along with its source code

barit.c. The kernel code that implements the above three system calls is not gdb-enabled, so you cannot

step into these functions. The code barit.c is given below with line numbers.

1: #include <stdio.h>

2: #include <stdlib.h>

3:

4: int main ()

5: {

6: char key[32];

7: int t;

8: printf("Enter key: ");

9: scanf("%s", key);

10: initsecret(key);

11: printf("Enter your guess: ");

12: scanf("%d", &t);

13: if (checksecret(t)) printf("You cracked it. Claim your reward.\n");

14: else printf("Nope. Try with a different key to claim your reward.\n");

15: exit(0);

16: }

Explain how you can use gdb to claim your reward. Explain, in detail, what gdb commands you use, and

when (the sequence of gdb commands that you enter). If you write a script, mention that clearly. Telling

only an algorithm or idea or pseudocode will deserve no credits. Notice that the program barit.c does not

use the call getelement(), but you can use gdb to call it as many times as you want—at the cost of one

second per call, so in the ten-minute period given to you, you can make at most 600 such calls. (10)

— Page 4 of 10 —

Solution Run barit under gdb: gdb ./barit

Set a breakpoint at Line 11 (after initsecret() creates the secret): b 11

run

Enter your key

gdb stops at Line 11. Define the following command:

define guess

if ((int)getelement(0) == 1)

print 0

else

if ((int)getelement(999999) == 999999)

print 1000000

else

set var $L = 1

set var $R = 1000000

while ($L < $R)

set var $M = (int)(($L + $R) / 2)

if ((int)getelement($M) == $M)

set var $L = $M + 1

else

set var $R = $M

end

end

print $L

end

end

end

When the gdb prompt returns, enter the command guess.

After about 22 seconds, the value of s is returned by the command.

Continue the run, enter this value as t, and get your reward.

— Page 5 of 10 —

4. You create a sorted linked list, where duplicates are allowed. You use a standard insertion function that

does not cause memory leaks. Later, you call a function rmdup() to remove all the duplicate entries from

the sorted list. You do not make any effort to free any node anywhere in your code. Suppose that the list

shown at the top of the following figure is created by using sorted insertion (no dummy node is used at the

beginning of the list). Then, you call rmdup() and exit(). At the time of exiting, the list is as shown at the

bottom of the figure below.

4 5 5 51 1 2 3 3 3 3

1 2 3 4 5

Initial list

After duplicate removal

3

What types of memory leaks and losses will be reported by valgrind on your program? For each type,

mention the amount of memory leak/loss (in bytes) and how many blocks are involved in that leak/loss

(Example: x bytes still reachable in y blocks). Also, explain which blocks are responsible for these leaks

and losses. Assume that each pointer is of size 8 bytes, and each node in the linked list is of size 16 bytes.

The code of rmdup() that your program uses is given below.

void rmdup (node *L)

{

if (L == NULL) return;

while (L -> next != NULL) {

if (L -> data == L -> next -> data)

L -> next = L -> next -> next;

else

L = L -> next;

}

} (10)

Solution The blocks after the call of rmdup() are shown below. The blocks that are directly (or definitely) lost are marked

DL, and the indirectly lost blocks are marked IL. The five nodes after duplicate removal are reachable by the

list header pointer.

4 5

5 5

DL IL

1 2 3

1 3 3 3

DL DL IL IL

3

IL

Since each node is of size 16 bytes, we have the following memory losses. Note that there are no internal

pointers.

Still reachable: 80 bytes in 5 blocks

Definitely lost: 48 bytes in 3 blocks

Indirectly lost: 64 bytes in 4 blocks

Possibly lost: 0 bytes in 0 blocks

— Page 6 of 10 —

5. For each of the two programs given below, a contiguous portion of the call graph as reported by gprof is

shown. In each case, determine the values entered by the user. Show all your calculations and justifications.

(a) Find x,y,z from the program and the gprof output given below. (5)

Program

#include <stdio.h>

int sqr (int n) { return n * n; }

int cub (int n) { return sqr(n) * n; }

int sum (int n) { return sqr(n) + cub(n); }

int main ()

{

int x, y, z, i;

scanf("%d%d%d", &x, &y, &z);

for (i=0; i<x; ++i) sqr(i);

for (i=0; i<y; ++i) cub(i);

for (i=0; i<z; ++i) sum(i);

}

gprof output

0.00 0.00 6/223 main [9]

0.00 0.00 217/223 sum [3]

[2] 0.0 0.00 0.00 223 cub [2]

0.00 0.00 223/564 sqr [1]

Solution x = 124, y = 6, and z = 217.

The above lines correspond to the function cub (see the primary line). The first line says that main makes 6

calls of cub, therefore

y = 6.

The remaining calls of cub are made by sum (see the second line). Also, sum is called only by main. These

observations imply that

z = 217.

In order to determine x, first note that each call of cub makes a single call of sqr. The remaining

564− 223 = 341 calls of sqr are made by other functions. Now, 217 calls of sum make 217 calls of sqr.

The remaining 341−217 = 124 calls of sqr are made by main, indicating that

x = 124.

— Page 7 of 10 —

(b) Find m,n from the program and the gprof output given below. (5)

Program

#include <stdio.h>

int Fib (int n)

{

if (n < 0) return -1;

if (n == 0) return 0;

if (n == 1) return 1;

return Fib(n-1) + Fib(n-2);

}

int main ()

{

int m, n, i;

scanf("%d%d", &m, &n);

for (i=0; i<m; ++i) Fib(n);

}

gprof output

index % time self children called name

518 Fib [1]

0.00 0.00 37/37 main [7]

[1] 0.0 0.00 0.00 37+518 Fib [1]

518 Fib [1]

Solution m = 37, n = 5.

Since main() calls Fib() 37 times (see the second line), we have

m = 37.

Each call of Fib() from main() uses a fixed argument n, that is, all such calls make equal numbers of recursive

calls. In this example, this number of recursive calls is 518/37 = 14. We can now determine n by trial and error.

n Total number of recursive calls

0 0

1 0

2 2+0+0 = 2

3 2+2+0 = 4

4 2+4+2 = 8

5 2+8+4 = 14

It therefore follows that

n = 5.

— Page 8 of 10 —

6. In the systems programming class, there are 155 students. Each student has a login in a linux server with

the roll number of the student, starting with 22CS, as the login ID. For example if your roll number is

22CS30099, then your home directory is /home/22CS30099.

Throughout the semester, all the students solve a number of programming assignments, where assignments

of each student are stored in separate directories somewhere in the student’s home area. Unfortunately, most

of the students do not follow any naming conventions, so it is difficult to identify the directory where the

makefile assignment is stored. The only information is that the makefile assignment directory contains a

Makefile, some C/C++ program file(s), and some header file(s) (with the extension .h). No directory of

any other assignment contains a Makefile.

Write a bash shell script that first cleans and then compiles the student’s make assignment using his/her

Makefile and stores the student’s roll number in Success.txt (roll numbers of the students whose make

assignments compile successfully to generates the executable file a.out). If either the Makefile does

not exist or there is a compilation error, the student’s roll number will be written in Failure.txt (roll

numbers of the students whose assignments fail to generate a.out using the Makefile). Success.txt and

Failure.txt will be created in the current directory. (10)

— Page 9 of 10 —

Solution
#!/bin/bash

pwd=‘pwd‘

listfile=$pwd/makelist.txt

success=$pwd/success.txt

fail=$pwd/failure.txt

‘rm -f $listfile $success $fail‘

function getUser()

{

awk -v "T=$line" ’BEGIN{split(T,a,"/");print a[3] }’

}

function getFolder()

{

awk -v "T=$line" ’BEGIN {

n=split(T,a,"Makefile");

for (i=1; i<=n; ++i) { print a[i] }

}’

}

find /home/ | grep "ˆ/home/22CS*" | grep "Makefile$" > $listfile

n=‘wc $listfile‘

echo "Located $n Makefiles"

echo "==="

if [-r $listfile];

then

IFS=$’\n’

for line in $(cat "$listfile")

do

user=‘getUser $line‘

path=‘getFolder $line‘

echo "--"

echo "Working on user [$user] at $path"

echo "--"

if [-s $line]; then

cd $path;make clean -f $line;make -f $line

fi

exefile="$path/a.out"

if [-s $exefile];

then

echo -e $user >> $success

else

echo -e $user >> $fail

fi

done

else

echo "None of the students!!!!"

fi

Note: If you use find, then there are many alternative ways to get the directory name. First, because Makefile is a

string of fixed length, you can pick a substring from a find entry. Second, you can use the command dirname.

The command ls -R does not add the directory name as the prefix of a file, and cannot be straightaway used in this

exercise.

You can also use your customized directory browser (like dirtree in the slides).

— Page 10 of 10 —

ROUGH WORK

ROUGH WORK

