
CS29206 Systems Programming Laboratory
Spring 2024

Lab Assignment: 5
Date: 07–Mar–2024

Handling implementation inefficiencies using gprof

This assignment deals with the same problem as Assignment 1. Foobar Chocolate Company (FCC) inserts
a randomly chosen coupon from a set of N types of coupons in each chocolate packet. The problem is to
simulate a sequence of purchases of chocolate packets until all types of coupons are available to the buyer
so that (s)he can demand a gift from FCC. The expected number of purchases for this to happen is NHN.

A solution is supplied to you in the two files bitter.c and choco.c. The first file makes an implementation
of the set ADT. Here, the coupon types are numbered as 0, 1, 2, … , N – 1. We maintain an int variable N
(the number of coupon types), and a dynamically allocated array A of N int variables storing which types
of coupons are in the buyer’s collection. Earlier, we have used a single array of N + 1 integers to store
these items together. Now, we use a structure coupons to store N and A separately. The following figure
demonstrates the storage of the set {0, 1, 2, 3, 5, 8, 13} with N = 16.

The file bitter.c defines only the set ADT functions required for solving the given problem. The other file
choco.c implements the main function, a trial function, and a function to compute harmonic numbers.

A bash script run is also supplied. Give the file execute permission, and run as ./run bitter N t to obtain
the gprof output. Here, N is the number of coupon types, and t is the number of trials. Your code should
run for at least 10 seconds for gprof to supply decent statistical results. Adjust t accordingly. Note that
bitter.c is a rather sloppy implementation for solving the given problem. The gprof flat profile will
identify the inefficient function(s).

Copy the file bitter.c to sweet.c. Improve the performance of bitter + choco in your sweet + choco.
Measure the performance of sweet + choco as ./run sweet N t. When should you stop? Well, there is no
end to it, perhaps. Researchers may report 0.001% improvements (over the last published results). For
you, continue before it is too late to make submissions. Here are the do’s and don’ts in your effort.

• You are not allowed to change choco.c. This means (among other things) that the I/O behavior of
the coupons functions cannot be changed.

• You can change the functions in sweet.c without changing the given data structure coupons.
• You can redesign coupons using another suitable data structure and rewrite the functions in

sweet.c (without changing the function prototypes).

• Assume that N is in the range 10 to 105.
• Do not supply .c in run. The call ./run sweet.c N t will bite you, albeit not too hard.
• If needed, you may write other helper functions in sweet.c.

Submit only your sweet.c. We will run it with the choco.c supplied to you. Evaluation will depend on how
much improvement you achieve and on the algorithm you use in your submitted file.

Sample Output

We have four implementations: bitter, dark, white, and sweet. In all the runs below, we take N = 104. The
number of trials t is adjusted for the different implementations so that the program runs for at least 10
seconds. Note that choco.c also computes the average time per trial using the clock() function. This is
not 100% accurate. Well, gprof too is not 100% accurate, but it will supply you with detailed function-by-
function estimates.

$./run bitter 10000 10
Average number of purchases per trial = 97684.200000
Theoretical average = 97876.060360
Time per trial (in microseconds) = 2025576.700000
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
100.78 20.37 20.37 976852 0.00 0.00 allcoupons
 0.05 20.38 0.01 10 0.00 2.04 nexttrial
 0.00 20.38 0.00 976842 0.00 0.00 addcoupon
 0.00 20.38 0.00 10 0.00 0.00 destroycoupons
 0.00 20.38 0.00 10 0.00 0.00 initempty
 0.00 20.38 0.00 1 0.00 0.00 H
 0.00 20.38 0.00 __do_global_dtors_aux
 0.00 20.38 0.00 __gmon_start__
 0.00 20.38 0.00 __libc_csu_fini
 0.00 20.38 0.00 __libc_csu_init
 0.00 20.38 0.00 _dl_relocate_static_pie
 0.00 20.38 0.00 _fini
 0.00 20.38 0.00 _init
 0.00 20.38 0.00 _start
 0.00 20.38 0.00 atexit
 0.00 20.38 0.00 data_start
 0.00 20.38 0.00 deregister_tm_clones
 0.00 20.38 0.00 etext
 0.00 20.38 0.00 frame_dummy
 0.00 20.38 0.00 main
 0.00 20.38 0.00 register_tm_clones
$./run dark 10000 100
Average number of purchases per trial = 99320.020000
Theoretical average = 97876.060360
Time per trial (in microseconds) = 197880.630000
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
100.09 19.51 19.51 9932102 0.00 0.00 allcoupons
 0.57 19.62 0.11 100 1.11 196.54 nexttrial
 0.16 19.65 0.03 9932002 0.00 0.00 addcoupon
 0.03 19.65 0.01 100 0.05 0.05 destroycoupons
 0.00 19.65 0.00 100 0.00 0.00 initempty
 0.00 19.65 0.00 1 0.00 0.00 H
 0.00 19.65 0.00 __do_global_dtors_aux
 0.00 19.65 0.00 __gmon_start__
 0.00 19.65 0.00 __libc_csu_fini
 0.00 19.65 0.00 __libc_csu_init
 0.00 19.65 0.00 _dl_relocate_static_pie
 0.00 19.65 0.00 _fini
 0.00 19.65 0.00 _init
 0.00 19.65 0.00 _start
 0.00 19.65 0.00 atexit
 0.00 19.65 0.00 data_start
 0.00 19.65 0.00 deregister_tm_clones
 0.00 19.65 0.00 etext
 0.00 19.65 0.00 frame_dummy
 0.00 19.65 0.00 main
 0.00 19.65 0.00 register_tm_clones
$ /run white 10000 1000
Average number of purchases per trial = 98073.475000
Theoretical average = 97876.060360
Time per trial (in microseconds) = 14977.923000
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 92.84 11.11 11.11 98073475 0.00 0.00 addcoupon
 6.06 11.84 0.73 1000 0.73 12.06 nexttrial
 1.52 12.02 0.18 98074475 0.00 0.00 allcoupons

 0.34 12.06 0.04 1000 0.04 0.04 helper
 0.00 12.06 0.00 1000 0.00 0.04 destroycoupons
 0.00 12.06 0.00 1000 0.00 0.00 initempty
 0.00 12.06 0.00 1 0.00 0.00 H
 0.00 12.06 0.00 __do_global_dtors_aux
 0.00 12.06 0.00 __gmon_start__
 0.00 12.06 0.00 __libc_csu_fini
 0.00 12.06 0.00 __libc_csu_init
 0.00 12.06 0.00 _dl_relocate_static_pie
 0.00 12.06 0.00 _fini
 0.00 12.06 0.00 _init
 0.00 12.06 0.00 _start
 0.00 12.06 0.00 atexit
 0.00 12.06 0.00 data_start
 0.00 12.06 0.00 deregister_tm_clones
 0.00 12.06 0.00 etext
 0.00 12.06 0.00 frame_dummy
 0.00 12.06 0.00 main
 0.00 12.06 0.00 register_tm_clones
$./run sweet 10000 2500
Average number of purchases per trial = 98111.468800
Theoretical average = 97876.060360
Time per trial (in microseconds) = 5782.816000
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 79.22 7.02 7.02 245281172 0.00 0.00 allcoupons
 9.89 7.89 0.88 2500 0.35 3.52 nexttrial
 9.09 8.70 0.81 245278672 0.00 0.00 addcoupon
 0.74 8.77 0.07 2500 0.03 0.03 destroycoupons
 0.34 8.80 0.03 2500 0.01 0.01 initempty
 0.00 8.80 0.00 1 0.00 0.00 H
 0.00 8.80 0.00 __do_global_dtors_aux
 0.00 8.80 0.00 __gmon_start__
 0.00 8.80 0.00 __libc_csu_fini
 0.00 8.80 0.00 __libc_csu_init
 0.00 8.80 0.00 _dl_relocate_static_pie
 0.00 8.80 0.00 _fini
 0.00 8.80 0.00 _init
 0.00 8.80 0.00 _start
 0.00 8.80 0.00 atexit
 0.00 8.80 0.00 data_start
 0.00 8.80 0.00 deregister_tm_clones
 0.00 8.80 0.00 etext
 0.00 8.80 0.00 frame_dummy
 0.00 8.80 0.00 main
 0.00 8.80 0.00 register_tm_clones
$

Naturally enough, we are going to submit our last version.

