
CS29206 Systems Programming Laboratory
Spring 2024

Lab Assignment: 4
Date: 29–Feb–2024

Fixing memory-related problems using valgrind

You are given a zip file A4.zip that contains the source code of a library, an application program based on
the library, and a few other things. If you build the library, and compile and run the code (under valgrind),
you notice two problems. First, the code does not run properly. This is because of a bug in the source code
of the library. This bug does not result in memory losses, but leads to uninitialized memory. Second, the
application program is very sloppy with its memory management, and leads to memory losses of several
kinds. Running the application program under valgrind will point out both the problems. Your task is to
identify the sources of the problems, and repair both the library and the application program so that all the
above memory-related problems are eliminated. The various components of A4.zip are now described.

The listutils library (listutils.h and listutils.c)

The library makes an implementation of the ADT sorted list (of integers). In order to store such a list, a
data type slist is defined. This data type is a structure consisting of two fields: the size n of the list, and an
int pointer item. The pointer item is dynamically allocated memory to store exactly n int variables. The
dynamic array stores the list in sorted (ascending) order. Duplicates are allowed in our sorted lists. The
empty list has n = 0 and item = NULL. The library implements the following functions on slist data types.

slist listinit () ;
This function returns the empty list. You must initialize an slist before passing it to any
listutils function. If you use an uninitialized slist, you are very likely to encounter a
segmentation fault. Our application program never does that. Note, however, that any slist
returned by a listutils function is appropriately structured, that is, you may store a returned
slist in an uninitialized slist structure. This structure can now be supplied as inputs to other
functions without any danger of segmentation faults.

void listkill (slist *) ;
void listfree (slist *) ;

These two functions are to be used to convert an initialized slist to the empty list. The
function listkill is unclean in terms of memory loss, whereas the function listfree is clean in
that respect.

slist listcopy (slist) ;
This function returns a copy of the input list. The item array of the copy is allocated fresh
memory, and leaves the input slist unchanged. Later, you can use the input slist and the
returned slist independently of one another.

slist listadd (slist , int) ;
slist listsub (slist , int) ;

These functions are respectively for inserting and deleting an element in an slist. The input
slist is not modified. A fresh slist is created as a result of the insertion or the deletion
operation, and is returned. Insertion returns a sorted list with exactly one extra item
(duplicates are allowed). Deletion returns a copy of the input list if the element to be
deleted is not present in the list. Otherwise, the output list is a copy of the input list with
only one instance of the element missing.

void listprn (slist) ;
Print an slist (sorted printing with duplicates, if any).

The library further defines a listop data type. In order to understand this, let us think of a sequence T of m
slist operations done on our lists. The result of the i-th operation is stored in an slist %i for 1 ⩽ i ⩽ m. Also,
assume that %0 is the empty list. For i ≠ j, we have two different slist structures %i and %j. Their item
arrays are allocated disjoint memory.

The data type listop is a structure of three integers. The first field operation is the code of an slist
operation (the codes of the permitted operations are #define’d in listutils.h). This is followed by two
arguments arg1 and arg2. An argument is the index of an slist appearing earlier or an integer to insert or
delete. If an operation does not require any of these arguments, that argument can be set to 0 (or –1 or left
undefined). For example, insertion has code 5. Therefore the i-th listop storing operation = 5, arg1 = j,
and arg2 = 3 is meant for setting %i = %j + 3 (insert the integer 3 to %j and store the result in %i). We must
have j < i. After this operation, %i will contain the new list, whereas %j will remain unaffected.

A file ops.txt storing 10 operations with the implied meanings are given below. This file is used in the
sample given below. We assume that %0 is the empty list.

Line Number Line Meaning Effects(s)
0 10 The number of slist operations is m = 10

1 5 0 4 %1 = %0 + 4 %1 = { 4 }
2 3 0 Free %0 and copy to %2 %0 = { } and %2 = { }

3 5 1 2 %3 = %1 + 2 %3 = { 2, 4 }
4 1 Initialize %4 to the empty list %4 = { }

5 5 4 7 %5 = %4 + 7 %5 = { 7 }
6 5 5 6 %6 = %5 + 6 %6 = { 6, 7 }

7 5 6 3 %7 = %6 + 3 %7 = { 3, 6, 7 }
8 2 7 Kill %7 and copy to %8 %7 = { } and %8 = { }

9 5 3 4 %9 = %3 + 4 %9 = { 2, 4, 4 }
10 6 9 4 %10 = %9 – 4 %10 = { 2, 4 }

The library provides the following function for reading the operations from a text file (like ops.txt).

listop *freadops (char *) ;
The input to this function is a file name. If the file contains m operations (written at the
beginning of the file), then a dynamically allocated array of m + 1 listop structures is
returned. The first m entries of this array are the m operations for computing the lists %i
with 1 ⩽ i ⩽ m. The last entry stores ENDOFOPS that null terminates the array. Since m is not
stored in the array, this entry indicates that there are no further operations.

The application program (listapp.c)

This program takes a command-line argument standing for the name of the operations file (like ops.txt). It
first calls freadops on this file to store the sequence of operations in a (null-terminated) array OPS of
listop structures. It then sets %0 to the empty list (this is not coming from any operation), and enters a loop
to generate and print %i for 1 ⩽ i ⩽ m as per the operations listed in OPS. The lists generated are stored in
a table T of slist structures. For each operation, an appropriate library function is called. When a special
operation called ENDOFOPS is encountered in OPS, the loop is broken, and the program terminates. The
application program makes no attempts to free any memory allocated during its running.

A random operation generator (genops.c)

The example operations file used in this write-up is supplied as OPS.txt. This is for your initial working
on this assignment. For generating larger samples, you can use the code genops.c provided in A4.zip.

This program takes an (optional) command-line argument: the number m of operations. Without this
argument, the default value m = 100 is used. A random list of m operations is written in the file ops.txt.

Makefile

A makefile is supplied in A4.zip to relieve you from any compilation effort. You can simply run

make runapp

to do all the jobs. This will create the library (liblistutils.so), compile the application program listapp.c,
and finally run the compiled application under valgrind. It, however, requires the input operations file to
have the name ops.txt. This filename is hard-coded in the makefile.

The operations generator genops.c is not compiled or run by make runapp, so no (new) ops.txt file is
created in this process. In order to experiment with larger (or smaller) samples, use the following.

make genops
./genops 1000

Some additional targets are library, app, and clean. Read the makefile to know what they do.

What you have to do

Copy OPS.txt to ops.txt, do make runapp, and see the problems. Repair the problems.

• First, repair all the memory-loss issues. This needs looking into listapp.c only.

• Then, look at the source code of the library, and repair the error messages “uninitialized memory”
belched out by valgrind. There is only one error in listutils.c.

• Do not change any file other than listapp.c and listutils.c. Your submission will be compiled under
the other original files (listutils.h, Makefile, and so on) supplied to you in A4.zip.

• Do not change any data type or function prototype.

• Do not introduce any new variables in any of the two C files mentioned above.

• Do not rewrite any code. In listapp.c, add suitable free() statements, and replace bad library calls
by good library calls. No other changes are permitted. In listutils.c, repair only the bug. Well, you
need to add exactly one extra statement somewhere. Do only that, and nothing else.

• Manipulate any slist data only using the library calls. For example, you must not call free() on the
item array of any slist. Use a library function that does this for you. This is how you should use
any ADT implementation (even if you know the internals of that ADT implementation).

Submit to the Moodle server (before it is too late) only your updated files listapp.c and listutils.c (as
individual C source files with those names, not as zip file(s)). You will get no credit if you submit any
other files and/or do not strictly follow the not directives given above.

Sample Output

First, use the given OPS.txt to see what problems you have. The memory problems are highlighted in red.

$ cp OPS.txt ops.txt
$ make runapp
gcc -I. -Wall -fPIC -c -o listutils.o listutils.c
gcc -shared -o liblistutils.so listutils.o
gcc -o listapp -Wall -I. -L. -Wl,-rpath=. listapp.c -llistutils
valgrind ./listapp ops.txt
==13667== Memcheck, a memory error detector
==13667== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==13667== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==13667== Command: ./listapp ops.txt
==13667==
%0 = { }
$ %0 + 4
==13667== Conditional jump or move depends on uninitialised value(s)
==13667== at 0x48E1958: __vfprintf_internal (vfprintf-internal.c:1687)
==13667== by 0x48CBD3E: printf (printf.c:33)
==13667== by 0x484B5DF: listprn (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/liblistutils.so)
==13667== by 0x109778: main (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/listapp)
==13667==
==13667== Use of uninitialised value of size 8
==13667== at 0x48C569B: _itoa_word (_itoa.c:179)
==13667== by 0x48E1574: __vfprintf_internal (vfprintf-internal.c:1687)
==13667== by 0x48CBD3E: printf (printf.c:33)
==13667== by 0x484B5DF: listprn (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/liblistutils.so)
==13667== by 0x109778: main (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/listapp)
==13667==
==13667== Conditional jump or move depends on uninitialised value(s)
==13667== at 0x48C56AD: _itoa_word (_itoa.c:179)
==13667== by 0x48E1574: __vfprintf_internal (vfprintf-internal.c:1687)
==13667== by 0x48CBD3E: printf (printf.c:33)
==13667== by 0x484B5DF: listprn (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/liblistutils.so)
==13667== by 0x109778: main (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/listapp)
==13667==
==13667== Conditional jump or move depends on uninitialised value(s)
==13667== at 0x48E2228: __vfprintf_internal (vfprintf-internal.c:1687)
==13667== by 0x48CBD3E: printf (printf.c:33)
==13667== by 0x484B5DF: listprn (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/liblistutils.so)
==13667== by 0x109778: main (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/listapp)
==13667==
==13667== Conditional jump or move depends on uninitialised value(s)
==13667== at 0x48E16EE: __vfprintf_internal (vfprintf-internal.c:1687)
==13667== by 0x48CBD3E: printf (printf.c:33)
==13667== by 0x484B5DF: listprn (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/liblistutils.so)
==13667== by 0x109778: main (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/listapp)
==13667==
%1 = { 0 }
$ free(%0)
%2 = { }
$ %1 + 2
==13667== Conditional jump or move depends on uninitialised value(s)
==13667== at 0x484B3B4: listadd (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/liblistutils.so)
==13667== by 0x10967E: main (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/listapp)
==13667==
%3 = { 0, 0 }
$ init()
%4 = { }
$ %4 + 7
%5 = { 0 }
$ %5 + 6
%6 = { 0, 0 }
$ %6 + 3
%7 = { 0, 0, 0 }
$ kill(%7)
%8 = { }
$ %3 + 4
%9 = { 0, 0, 0 }
$ %9 - 4
==13667== Conditional jump or move depends on uninitialised value(s)
==13667== at 0x484B479: listsub (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/liblistutils.so)
==13667== by 0x1096FD: main (in /home/abhij/IITKGP/course/lab/SPL/Spring24/prog/A4/listapp)
==13667==
%10 = { 0, 0, 0 }
==13667==
==13667== HEAP SUMMARY:
==13667== in use at exit: 448 bytes in 9 blocks
==13667== total heap usage: 16 allocs, 7 frees, 6,280 bytes allocated
==13667==
==13667== LEAK SUMMARY:
==13667== definitely lost: 12 bytes in 1 blocks
==13667== indirectly lost: 0 bytes in 0 blocks
==13667== possibly lost: 132 bytes in 1 blocks
==13667== still reachable: 304 bytes in 7 blocks
==13667== suppressed: 0 bytes in 0 blocks
==13667== Rerun with --leak-check=full to see details of leaked memory
==13667==
==13667== Use --track-origins=yes to see where uninitialised values come from
==13667== For lists of detected and suppressed errors, rerun with: -s
==13667== ERROR SUMMARY: 84 errors from 7 contexts (suppressed: 0 from 0)

After you repair the problems, your output should look as follows.

$ make runapp
gcc -shared -o liblistutils.so listutils.o
gcc -o listapp -Wall -I. -L. -Wl,-rpath=. listapp.c -llistutils
valgrind ./listapp ops.txt
==14041== Memcheck, a memory error detector
==14041== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==14041== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==14041== Command: ./listapp ops.txt
==14041==
%0 = { }
$ %0 + 4
%1 = { 4 }
$ free(%0)
%2 = { }
$ %1 + 2
%3 = { 2, 4 }
$ init()
%4 = { }
$ %4 + 7
%5 = { 7 }
$ %5 + 6
%6 = { 6, 7 }
$ %6 + 3
%7 = { 3, 6, 7 }
$ kill(%7)
%8 = { }
$ %3 + 4
%9 = { 2, 4, 4 }
$ %9 - 4
%10 = { 2, 4 }
==14041==
==14041== HEAP SUMMARY:
==14041== in use at exit: 0 bytes in 0 blocks
==14041== total heap usage: 16 allocs, 16 frees, 6,276 bytes allocated
==14041==
==14041== All heap blocks were freed -- no leaks are possible
==14041==
==14041== For lists of detected and suppressed errors, rerun with: -s
==14041== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Notice that the exact outputs you see on your machine may be different from what is shown in the above
sample transcript. The errors will appear anyway.

