
Systems Programming Laboratory, Spring 2023

Programming bash

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

April 2, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Why shell programming?

• You can write C/C++/Java/Python/. . . programs for every doable thing.

• Precompiled libraries make your job easier.

• C programs are naturally good for number crunching, data structuring, . . .

• Specially written programs can do special tasks with little programming efforts.

• grep specializes in pattern matching.

• gawk specializes in text data processing.

• A shell like bash specializes in many types of file handling.

• C programs for these special jobs are often huge and difficult to write.

• A shell script is an all-in-one solution to simplify a programmer’s life.

• A shell itself does whatever it is naturally good at.

• For special tasks, it can call the specialists with little effort.

• Shell scripts are very useful for system administration.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



What have you seen, and what next?

• What you already know:

• How bash can execute commands.

• How bash can manage variables and arrays.

• How bash can define functions.

• How bash can do arithmetic operations using $((...)).

• How bash can store the complete outputs (not the return values) produced by other

programs using back-quotes or $(...).

• How bash can do pattern-based substitutions in command lines.

• What remains for you to know is the control structures.

• Condition checking

• Conditional execution

• Loops

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Introductory concepts

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Your first shell script

• First line: The hash-bang or she-bang notation specifies the interpreter.

• Then, write the shell commands and directives.

• Add execute permission to the shell script.

• Run the script.

File hello.sh
#!/bin/bash

echo "Hello, world!"

Running hello.sh

$ chmod 755 hello.sh

$ ./hello.sh

Hello, world!

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



An interactive shell script to list all files of an extension

The script findall.sh

#!/bin/bash

echo -n "*** Enter an extension (without the dot): "

read extn

echo "*** Okay, finding all files in your home area with extension $extn"

ls -R ~ | grep "\.$extn$"

echo "*** That’s all you have. Bye."

Running findall.sh

$ chmod a+x findall.sh

$ ./findall.sh

*** Enter an extension (without the dot): tif

*** Okay, finding all files in your home area with extension tif

centralimage-1500.tif

formulas-hires.tif

frontcover-hires.tif

Crypto.tif

left.tif

dataconv2.tif

ICDCN_DD.tif

ICDCN_LNCS.tif

ICDCN_REGN.tif

lncs-logo_4c.tif

*** That’s all you have. Bye.

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



You can supply regular expressions in extension

$ ./findall.sh

*** Enter an extension (without the dot): [A-Z]

*** Okay, finding all files in your home area with extension [A-Z]

LABTEST.C

gf2n.S

test.S

template17.Z

*** That’s all you have. Bye.

$ ./findall.sh

*** Enter an extension (without the dot): [a-z]*[^a-zA-Z]

*** Okay, finding all files in your home area with extension [a-z]*[^a-zA-Z]

crypto.toc7

cfp.html~

bwedit3.0

words.2

2021-11-15.mp4

MontgomeryLadder.gp~

Numberlink.mp3

*** That’s all you have. Bye.

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Running another interpreter

rungawk.sh

#!/bin/bash

echo -n "Enter dinosaur database file: "

read dbfile

gawk ’

BEGIN { FS=":"; print "Theropod dinosaurs" }

{

if ($2 ~ "theropod") { print "\t" $1; n++ }

}

END { print n " theropods found" }

’ $dbfile

Note:

• $1 and $2 have different meanings in bash and gawk.

• Since the commands of gawk are within single quotes, bash does not expand $1 and $2.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Output of rungawk.sh

$ ./rungawk.sh

Enter dinosaur database file: ../awk/dinosaurs.txt

Theropod dinosaurs

Albertosaurus

Allosaurus

Archaeopteryx

Baryonyx

Carcharodontosaurus

Carnotaurus

Ceratosaurus

Chindesaurus

Coelophysis

Deinocheirus

Deinonychus

Dilophosaurus

Giganotosaurus

Indosuchus

Majungasaurus

Megalosaurus

Microraptor

Monolophosaurus

Oviraptor

Sinraptor

Spinosaurus

Tarbosaurus

Tyrannosaurus

Utahraptor

Velociraptor

25 theropods found

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Using here documents

rungawkfile.sh

#!/bin/bash

echo -n "Enter dinosaur database file: "

read dbfile

cat << EOP > thero.awk

BEGIN { FS=":"; print "Theropod dinosaurs" }

{

if (\$2 ~ "theropod") { print "\t" \$1; n++ }

}

END { print n " theropods found" }

EOP

gawk -f thero.awk $dbfile

Notes:

• echo (in place of cat) does not work here. Why?

• Here documents expand the variables. To prevent this from happening, you should

use \$1 and \$2.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Output of rungawkfile.sh

$ ./rungawkfile.sh

Enter dinosaur database file: ../awk/dinosaurs.txt

Theropod dinosaurs

Albertosaurus

Allosaurus

Archaeopteryx

Baryonyx

Carcharodontosaurus

Carnotaurus

Ceratosaurus

Chindesaurus

Coelophysis

Deinocheirus

Deinonychus

Dilophosaurus

Giganotosaurus

Indosuchus

Majungasaurus

Megalosaurus

Microraptor

Monolophosaurus

Oviraptor

Sinraptor

Spinosaurus

Tarbosaurus

Tyrannosaurus

Utahraptor

Velociraptor

25 theropods found

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Storing the output of another program in a string

rungawkstore.sh

#!/bin/bash

echo -n "Enter dinosaur database file: "

read dbfile

cat << EOP > thero.awk

BEGIN { FS=":"; print "Theropod dinosaurs" }

{

if (\$2 ~ "theropod") { print "\t" \$1; n++ }

}

END { print n " theropods found" }

EOP

gawkop=‘gawk -f thero.awk $dbfile‘

echo "gawk produced the following output..."

echo $gawkop

Running the script

$ ./rungawkstore.sh

Enter dinosaur database file: ../awk/dinosaurs.txt

gawk produced the following output...

Theropod dinosaurs Albertosaurus Allosaurus Archaeopteryx Baryonyx Carcharodontosaurus Carnotaurus

Ceratosaurus Chindesaurus Coelophysis Deinocheirus Deinonychus Dilophosaurus Giganotosaurus Indosuchus

Majungasaurus Megalosaurus Microraptor Monolophosaurus Oviraptor Sinraptor Spinosaurus Tarbosaurus

Tyrannosaurus Utahraptor Velociraptor 25 theropods found

$

Note: Use echo "$gawkop" to see the correctly formatted output.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Processing the stored output

rungawkgrep.sh prints only the theropod dinosaur names not ending with s

#!/bin/bash

echo -n "Enter dinosaur database file: "

read dbfile

cat << EOP > thero.awk

BEGIN { FS=":"; print "Theropod dinosaurs" }

{

if (\$2 ~ "theropod") { print "\t" \$1; n++ }

}

END { print n " theropods found" }

EOP

gawkop=‘gawk -f thero.awk $dbfile‘

echo "Output of gawk is filtered through grep..."

echo "$gawkop" | grep "^[^a-zA-Z0-9].*[^s]$" -

Running the script

$ ./rungawkgrep.sh

Enter dinosaur database file: ../awk/dinosaurs.txt

Output of gawk is filtered through grep...

Archaeopteryx

Baryonyx

Microraptor

Oviraptor

Sinraptor

Utahraptor

Velociraptor

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Return modes revisited

• Every command returns a value.

• Your shell functions also run as commands.

• The return value is to be treated as a status.

• The status is usually a small integer in the range [0,255].

• For returning other things (larger integers, floating-point values, and strings), you

have to use other mechanisms.

• Status is to be treated as status, not as value.

• Use one of the following mechanisms.

• Returning by setting global variable(s).

• Returning by echoing.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Return values through global variables

hypo1.sh

#!/bin/bash

function hypotenuse () {

local a=$1;

local b=$2;

a=$((a*a))

b=$((b*b))

csqr=$((a+b))

c=‘echo "scale=10; sqrt($csqr)" | bc‘

}

echo -n "Enter a and b: "

read a b

hypotenuse $a $b

echo "a = $a, b = $b, c = $c, csqr = $csqr"

Running the script

$ ./hypo1.sh

Enter a and b: 5 6

a = 5, b = 6, c = 7.8102496759, csqr = 61

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Return values by echoing

hypo2.sh

#!/bin/bash

function hypotenuse () {

local a=$1;

local b=$2;

a=$((a*a))

b=$((b*b))

csqr=$((a+b))

echo ‘echo "scale=10; sqrt($csqr)" | bc‘

}

echo -n "Enter a and b: "

read a b

c=‘hypotenuse $a $b‘

echo "a = $a, b = $b, c = $c"

Running the script

$ ./hypo2.sh

Enter a and b: 5 6

a = 5, b = 6, c = 7.8102496759

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



You have a price to pay

hypo3.sh

#!/bin/bash

function hypotenuse () {

local a=$1;

local b=$2;

a=$((a*a))

b=$((b*b))

csqr=$((a+b))

echo ‘echo "scale=10; sqrt($csqr)" | bc‘

}

echo -n "Enter a and b: "

read a b

csqr="Not yet computed"

c=‘hypotenuse $a $b‘

echo "a = $a, b = $b, c = $c, csqr = $csqr"

Running the script

$ ./hypo3.sh

Enter a and b: 5 6

a = 5, b = 6, c = 7.8102496759, csqr = Not yet computed

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



What happened to csqr?

• Whenever you run a command using ‘...‘ or $(...), a sub-shell is opened.

• A function call also works like a command.

• Any changes in the global variables of this shell, that you make in the sub-shell, have

no effect in this shell.

• This happens even if you export your variables.

• This is the difference between

cmd arg1 arg2 ...

and

storedop=‘cmd arg1 arg2 ...‘

echo "$storedop"

• In the first case, cmd is executed in this shell, and in the second case, in a sub-shell.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Logical conditions

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Overview

• Needed for conditional execution of blocks, and in loops.

• Unlike C, 0 means True, and non-zero means False.

• A command returns a status.

• The return status indicates true (successful completion) or false (unsuccessful

completion).

• The return status can be accessed as $?.

• Conditions can be logically joined by || or &&, or negated by !.

• Use parentheses ( and ) for disambiguation (if needed).

• Other types of conditions

• Results of numeric comparisons

• Results of string comparisons

• Conditions on file attributes

• These other conditions can be checked as test condition or as [ condition ].

• Note the space after [ and before ].

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Checking return status

Note: && and || are short-circuit operators.

$ ls ~/[a-z].* ; echo $?

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

2

$ ls ~/*.[a-z] ; echo $?

/home/foobar/assignment1.c /home/foobar/assignment2.c /home/foobar/assignment3.c

0

$ ls ~/[a-z].* && ls ~/*.[a-z] ; echo $?

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

2

$ ls ~/[a-z].* || ls ~/*.[a-z] ; echo $?

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

/home/foobar/assignment1.c /home/foobar/assignment2.c /home/foobar/assignment3.c

0

$ ls ~/*.[a-z] && ls ~/[a-z].* ; echo $?

/home/foobar/assignment1.c /home/foobar/assignment2.c /home/foobar/assignment3.c

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

2

$ ls ~/*.[a-z] || ls ~/[a-z].* ; echo $?

/home/foobar/assignment1.c /home/foobar/assignment2.c /home/foobar/assignment3.c

0

$ ! ls ~/[a-z].* ; echo $?

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

0

$ ! ls ~/[a-z].* && ls ~/*.[a-z] ; echo $?

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

/home/foobar/assignment1.c /home/foobar/assignment2.c /home/foobar/assignment3.c

0

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Numeric comparisons

• Syntax: [ EXPR1 -comp_op EXPR2 ]

• Numeric comparisons apply to integer values only.

• Fractional/non-numeric/undefined values lead to errors.

• The comparison operators are as follows. Here, “if” means “if and only if”.

-eq True if the two expressions are equal.

-ne True if the two expressions are unequal.

-lt True if the first expression is less than the second.

-le True if the first expression is less than or equal to the second.

-gt True if the first expression is greater than the second.

-ge True if the first expression is greater than or equal to the second.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Examples of numeric comparison

$ x=3; y=4; z=5

$ [$y -eq 3]; echo $?

[4: command not found

127

$ [ $y -eq 3]; echo $?

bash: [: missing ‘]’

2

$ [ $y -eq 3 ]; echo $?

1

$ [ $y -gt $x ]; echo $?

0

$ [ $y -gt $z ]; echo $?

1

$ [ $y -gt $x ] && [ $y -gt $z ]; echo $?

1

$ [ $y -gt $x ] && [ ! $y -gt $z ]; echo $?

0

$ [ $y -gt $x ] || [ $y -gt $z ]; echo $?

0

$ [ $((x**2 + y**2)) -eq $((z**2)) ]; echo $?

0

$ w=‘echo "scale=10; sqrt($z)" | bc‘; echo $w

2.2360679774

$ [ $w -le $x ]; echo $?

bash: [: 2.2360679774: integer expression expected

2

$ [ ! $w -le $x ]; echo $?

bash: [: 2.2360679774: integer expression expected

2

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



String comparisons

• Strings can be compared for equality/inequality.

• A string with space(s) should be quoted.

[ STR1 = STR2 ] True if the two strings are equal.

[ STR1 == STR2 ] True if the two strings are equal.

[ STR1 != STR2 ] True if the two strings are unequal.

[ -z STR ] True if STR is an empty/undefined string.

[ -n STR ] True if STR is a non-empty string.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Examples of string comparisons

$ x="Foolan"; y="Foolan Barik"

$ [ $x = $y ]; echo $?

bash: [: too many arguments

2

$ [ "$x" == "$y" ]; echo $?

1

$ [ ! "$x" == "$y" ]; echo $?

0

$ [ "$x" != "$y" ]; echo $?

0

$ [ -z "$z" ]; echo $?

0

$ z=""; [ -z "$z" ]; echo $?

0

$ z=" "; [ -z "$z" ]; echo $?

1

$ z=" "; [ -z $z ]; echo $?

0

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Conditions based on file attributes

[ -e FILE ] True if FILE exists

[ -f FILE ] True if FILE exists and is a regular file

[ -s FILE ] True if FILE exists and is non-empty

[ -d FILE ] True if FILE exists and is a directory

[ -r FILE ] True if FILE exists and has read permission

[ -w FILE ] True if FILE exists and has write permission

[ -x FILE ] True if FILE exists and has execute permission

[ FILE1 -nt FILE2 ] True if FILE1 is newer than FILE2

[ FILE1 -ot FILE2 ] True if FILE1 is older than FILE2

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



File conditions: Example

filecheck.sh
#!/bin/bash

[ $# -eq 0 ] && { echo "Run with a command-line argument"; exit 1; }

[ ! -e "$1" ] && { echo "\"$1\" does not exist"; exit 0; }

echo "\"$1\" exists"

[ -f "$1" ] && echo "\"$1\" is a regular file"

[ ! -f "$1" ] && echo "\"$1\" is not a regular file"

[ -d "$1" ] && echo "\"$1\" is a directory"

[ ! -d "$1" ] && echo "\"$1\" is not a directory"

echo -n "Permissions:"

[ -r "$1" ] && echo -n " read"

[ -w "$1" ] && echo -n " write"

[ -x "$1" ] && echo -n " execute"

echo ""

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Run filecheck.sh

$ ./filecheck.sh

Run with a command-line argument

$ ./filecheck.sh filecheck.sh

"filecheck.sh" exists

"filecheck.sh" is a regular file

"filecheck.sh" is not a directory

Permissions: read write execute

$ ./filecheck.sh /usr/

"/usr/" exists

"/usr/" is not a regular file

"/usr/" is a directory

Permissions: read execute

$ ./filecheck.sh /dev/null

"/dev/null" exists

"/dev/null" is not a regular file

"/dev/null" is not a directory

Permissions: read write

$ ./filecheck.sh /etc/passwd

"/etc/passwd" exists

"/etc/passwd" is a regular file

"/etc/passwd" is not a directory

Permissions: read

$ ./filecheck.sh ~/spl/*
"/home/foobar/spl/asgn" exists

"/home/foobar/spl/asgn" is not a regular file

"/home/foobar/spl/asgn" is a directory

Permissions: read write execute

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Disambiguation of logical expressions

• Let A = F, B = F, and C = T .

• So AB+C = (AB)+C = F+T = T , whereas A(B+C) = F(F+T) = FT = F.

• In bash, && and || have the same precedence.

• Left-to-right associativity is used for disambiguation.

• A+BC is interpreted as (A+B)C which evaluates to (T +F)F = TF = F.

• If you mean A+(BC), use parentheses, so it evaluates to T +(FF) = T +F = T .

• true and false are the constant values T and F.

$ [ "abc" == "a b c" ] && [ 5 -eq $((3+4)) ] || [ ! -f /dev/null ] ; echo $?

0

$ [ "abc" == "a b c" ] && ( [ 5 -eq $((3+4)) ] || [ ! -f /dev/null ] ) ; echo $?

1

$ [ ! -f /dev/null ] || [ "abc" == "a b c" ] && [ 5 -eq $((3+4)) ] ; echo $?

1

$ [ ! -f /dev/null ] || ( [ "abc" == "a b c" ] && [ 5 -eq $((3+4)) ] ) ; echo $?

0

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Conditional statements

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Summary of conditional statements

• if condition; then c1; c2; ... cm; fi

• if condition; then c1; c2; ... cm; else d1; d2; ... dn; fi

• Each semi-colon (;) can be substituted by a new line.

• if condition
then

c1
c2
...
cm

else
d1
d2
...
dn

fi

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Summary of conditional statements (continued)

• if condition1; then block_1; elif condition2; then block_2;

... else block_r; fi

• case value in val1) block1 ;; val2) block2 ;; ... valn)

blockn ;; *) dftblock ;; esac

• Note the use of semi-colons.

• Every condition must be followed by a semi-colon.

• No need to have a semi-colon after then, else, or elif.

• Use a semi-colon before then, else, or elif if it appears in the same line as the

preceding block.

• A double-semi-colon is needed before every case option (starting from the second).

• Multiple values in case can be separated by |.

• For checking the conditions, bash silently looks at the special variable $?, and

proceeds accordingly.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Example of conditional statements

checkfile.sh
#!/bin/bash

if [ $# -eq 0 ]; then

echo "Run with one command-line argument"

exit 1

fi

fname=$1

if [ ! -e "$fname" ]; then

echo "\"$fname\" does not exist"

exit 2

else

if [ -f "$fname" ]; then echo "\"$fname\" is a regular file"

elif [ -d "$fname" ]; then echo "\"$fname\" is a directory"

else echo "\"$fname\" is neither a regular file nor a directory"

fi

echo -n "Permissions:"

if [ -r "$fname" ]; then echo -n " read"; fi

if [ -w "$fname" ]; then echo -n " write"; fi

if [ -x "$fname" ]; then echo -n " execute"; fi

echo ""

fi

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Run checkfile.sh

$ ./checkfile.sh

Run with one command-line argument

$ ./checkfile.sh checkfile.sh

"checkfile.sh" is a regular file

Permissions: read write execute

$ ./checkfile.sh /usr/

"/usr/" is a directory

Permissions: read execute

$ ./checkfile.sh ~/spl/

"/home/foobar/spl/" is a directory

Permissions: read write execute

$ ./checkfile.sh /dev/null

"/dev/null" is neither a regular file nor a directory

Permissions: read write

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Example of case

#!/bin/bash

if [ $# -eq 0 ]; then

echo "Usage: $0 FILENAME WORD1 [WORD2 [WORD3]]"

exit 1

fi

fname=$1

case $# in

1) echo "You should specify one, two, or three word(s)" ;;

2) c=‘grep -c -e $2 $fname‘ ;;

3) c=‘grep -c -e $2 -e $3 $fname‘ ;;

4) c=‘grep -c -e $2 -e $3 -e $4 $fname‘ ;;

*) echo "Too many words. Giving up..." ;;

esac

if [ $c ]; then echo "$c lines matched"; fi

$ ./options.sh

Usage: ./options.sh FILENAME WORD1 [WORD2 [WORD3]]

$ ./options.sh textfile.txt

You should specify one, two, or three word(s)

$ ./options.sh textfile.txt problem

2 lines matched

$ ./options.sh textfile.txt problem algorithm

7 lines matched

$ ./options.sh textfile.txt problem algorithm method

12 lines matched

$ ./options.sh textfile.txt problem algorithm method protocol

Too many words. Giving up...

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



An inefficient Fibonacci-number calculator

fib.sh returns Fibonacci numbers by echoing

#!/bin/bash

function FIB () {

local n=$1

if [ $n -le 1 ]; then echo "$n"; return 0; fi

echo $(( ‘FIB $((n-1))‘ + ‘FIB $((n-2))‘ ))

}

echo -n "Enter n: "; read n

echo "F($n) = ‘FIB $n‘"

$ ./fib.sh

Enter n: 0

F(0) = 0

$ ./fib.sh

Enter n: 1

F(1) = 1

$ ./fib.sh

Enter n: 5

F(5) = 5

$ ./fib.sh

Enter n: 10

F(10) = 55

$ ./fib.sh

Enter n: 16

F(16) = 987

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Calculating Fibonacci numbers with memoization: A failed attempt

fibmemobad.sh attempts to store the calculated Fibonacci numbers in the array F[]

#!/bin/bash

function FIB () {

local n=$1

if [ ! ${F[$n]} ]; then

F[$n]=$(( ‘FIB $((n-1))‘ + ‘FIB $((n-2))‘ ))

fi

echo ${F[$n]}

}

echo -n "Enter n: "; read n

declare -ai F=([0]=0 [1]=1)

echo "${F[@]}"

echo "${!F[@]}"

echo "F($n) = ‘FIB $n‘"

echo "${F[@]}"

echo "${!F[@]}"

Output is correct, but equally slow

$ ./fibmemobad.sh

Enter n: 16

0 1

0 1

F(16) = 987

0 1

0 1

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



A repaired script that actually does memoization

fibmemo.sh makes all the calculations in the current shell, so F[ ] is correctly modified

#!/bin/bash

function FIB () {

local n=$1

if [ ! ${F[$n]} ]; then

FIB $((n-1))

FIB $((n-2))

F[$n]=$(( F[n-1] + F[n-2] ))

fi

}

echo -n "Enter n: "; read n

declare -ai F=([0]=0 [1]=1)

echo "${F[@]}"

echo "${!F[@]}"

FIB $n

echo "F($n) = ${F[$n]}"

echo "${F[@]}"

echo "${!F[@]}"

./fibmemo.sh

Enter n: 16

0 1

0 1

F(16) = 987

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



A script to reverse strings

reversal.sh
#!/bin/bash

function reverse () {

local S=$1

local Slen=${#S}

local T

case $Slen in

0|1) echo "$S" ;;

*) T=${S:0:-1}; T=‘reverse "$T"‘; echo "${S: -1}$T" ;;

esac

}

echo -n "Enter a string: "; read S

echo -n "reverse($S) = "

S=‘reverse "$S"‘

echo "$S"

$ ./reversal.sh

Enter a string: a bc def ghij klmno pqrstu

reverse(a bc def ghij klmno pqrstu) = utsrqp onmlk jihg fed cb a

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Loops

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



The loop structures at a glance

• for item in list; do block; done

• for arg do block; done

This is equivalent to

for arg in $@; do block; done

• while condition; do block; done

While loops are repeated so long as condition is true.

• until condition; do block; done

Until loops are repeated so long as condition is false.

• Semi-colons may be replaced by new lines.

for item in list
do

block

done

• break, continue, and exit work in the usual way.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



A simple example

• Each of the following loops prints 0,1,2, . . . ,9 in that order, one in each line.

• for n in 0 1 2 3 4 5 6 7 8 9; do echo $n; done

• for n in ‘echo {0..9}‘; do echo $n; done

• n=0; while [ $n -lt 10 ]; do echo $n; n=$((n+1)); done

• n=0; until [ $n -eq 10 ]; do echo $n; n=$((n+1)); done

• Do not quote the list in the for loop, because the quoted list stands for a list of a

single item.

• The range {i..j} can be specified only for constant values of i and j.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



An iterative Fibonacci number calculator

• The shell script fibiter.sh maintains an array F to store

F(0),F(1),F(2), . . . ,F(N) for some N.

• N is initialized to 1, and F is initialized to store 0,1 only.

• In a loop, the script asks for entering n.

• The loop continues until the user enters a non-negative value for n.

• If n 6 N, F(n) is read from the array, and displayed.

• If n > N, then the array F is appended by F(N +1),F(N +2), . . . ,F(n), and N is set

to n. Subsequently, F(n) is displayed.

• After this, the user is asked whether (s)he wants to continue. If not, the script

terminates.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



The script fibiter.sh

#!/bin/bash

function computerest () {

local n=$1

while [ $n -le $2 ]; do F[$n]=$((F[n-1]+F[n-2])); n=$((n+1)); done

}

declare -ia F=([0]=0 [1]=1); N=1

while true

do

echo -n "Enter n: "; read n

if [ $n -lt 0 ]; then echo "Enter a positive integer please"; continue; fi

if [ $n -gt $N ]; then

echo "Computing F($((N+1))) through F($n)"

computerest $((N+1)) $n

N=$n

fi

echo "F($n) = ${F[$n]}"

until false

do

echo -n "Repeat (y/n)? "; read resp

case $resp in

y|Y) break ;;

n|N) echo "Bye..."; exit 0 ;;

*) echo "Invalid response. Retry...";;

esac

done

done

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Running fibiter.sh

$ ./fibiter.sh

Enter n: 16

Computing F(2) through F(16)

F(16) = 987

Repeat (y/n)? y

Enter n: 32

Computing F(17) through F(32)

F(32) = 2178309

Repeat (y/n)? Y

Enter n: 64

Computing F(33) through F(64)

F(64) = 10610209857723

Repeat (y/n)? U

Invalid response. Retry...

Repeat (y/n)? Y

Enter n: -40

Enter a positive integer please

Enter n: 40

F(40) = 102334155

Repeat (y/n)? n

Bye...

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



A script to recursively print directory trees

dirtree.sh
#!/bin/bash

function exploredir () {

local currentdir=$1

local currentlev=$2

local lev=0

while [ $lev -lt $currentlev ]; do echo -n " "; lev=$((lev+1)); done

echo -n $currentdir

if [ ! -r "$currentdir" ] || [ ! -x "$currentdir" ]; then

echo " [Unable to explore further]"

else

echo ""

for entry in ‘ls "$currentdir"‘; do

if [ -d "$currentdir/$entry" ]; then

exploredir "$currentdir/$entry" $((currentlev+1))

fi

done

fi

}

if [ $# -eq 0 ]; then rootdir=.; else rootdir=$1; fi

if [ ! -d "$rootdir" ]; then echo "$rootdir is not a directory"; exit 1; fi

exploredir "$rootdir" 0

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Running dirtree.sh

$ ./dirtree.sh /usr/local

/usr/local

/usr/local/bin

/usr/local/etc

/usr/local/games

/usr/local/include

/usr/local/lib

/usr/local/lib/python3.8

/usr/local/lib/python3.8/dist-packages

/usr/local/man

/usr/local/sbin

/usr/local/share

/usr/local/share/ca-certificates

/usr/local/share/emacs

/usr/local/share/emacs/site-lisp

/usr/local/share/fonts

/usr/local/share/man

/usr/local/share/sgml

/usr/local/share/sgml/declaration

/usr/local/share/sgml/dtd

/usr/local/share/sgml/entities

/usr/local/share/sgml/misc

/usr/local/share/sgml/stylesheet

/usr/local/share/texmf

/usr/local/share/xml

/usr/local/share/xml/declaration

/usr/local/share/xml/entities

/usr/local/share/xml/misc

/usr/local/share/xml/schema

/usr/local/src

/usr/local/WinFIG

/usr/local/WinFIG/Documentation [Unable to explore further]

/usr/local/WinFIG/plugins [Unable to explore further]

/usr/local/WinFIG/Scripts [Unable to explore further]

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Writing C-style loops

• Use ((...)).

• for (( i = 0; i < 10; ++i )) do echo $i; done

• i=0

while (( i < 10 )); do echo $i; (( ++i )); done

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Reading a file line-by-line in an array

file2array.sh

#!/bin/bash

[ $# -ge 1 ] || exit 1;

for fname in $@; do

if [ ! -f $fname ] || [ ! -r $fname ]; then

echo "--- Unable to read $fname"

continue

fi

echo -n "+++ Reading file $fname: "

L=()

while read -r line; do

L+=("$line")

done < $fname

echo "${#L[@]} lines read"

done

$ ./file2array.sh ~/spl/prog/libstaque/*
+++ Reading file /home/foobar/spl/prog/libstaque/Makefile: 17 lines read

--- Unable to read /home/foobar/spl/prog/libstaque/shared

--- Unable to read /home/foobar/spl/prog/libstaque/static

$ ./file2array.sh ~/spl/prog/libstaque/static/*.?

+++ Reading file /home/foobar/spl/prog/libstaque/static/defs.h: 11 lines read

+++ Reading file /home/foobar/spl/prog/libstaque/static/queue.c: 82 lines read

+++ Reading file /home/foobar/spl/prog/libstaque/static/queue.h: 17 lines read

+++ Reading file /home/foobar/spl/prog/libstaque/static/stack.c: 79 lines read

+++ Reading file /home/foobar/spl/prog/libstaque/static/stack.h: 14 lines read

+++ Reading file /home/foobar/spl/prog/libstaque/static/staque.h: 8 lines read

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Finding all matches of a regular expression in a file

allmatches.sh
#!/bin/bash

if [ $# -lt 2 ]; then echo "Usage: $0 filename regexp"; exit 1; fi

pattern="(.*)($2)(.*)"

nmatch=0

while read -r line; do

T=(); M=()

while true; do

if [[ ! $line =~ $pattern ]]; then

T+=("$line")

break

fi

T+=("${BASH_REMATCH[3]}")

M+=("${BASH_REMATCH[2]}")

line="${BASH_REMATCH[1]}"

done

l=$(( ${#T[@]} - 1))

nmatch=$(( nmatch + l ))

echo -n "${T[$l]}"

for (( i=l-1; i>=0; --i)) do

echo -n "[${M[$i]}]${T[$i]}"

done

echo

done < $1

echo "+++ Total number of matches = $nmatch"

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Running allmatches.sh

$ ./allmatches.sh textfile.txt ’[A-Z][^A-Z]*[a-z]’

[Abstract]

[This tutorial focuses on algorithms for factoring large composite integers]

and for computing discrete logarithms in large finite fields. [In order to]

make the exposition self-sufficient, [I start with some common and popular]

public-key algorithms for encryption, key exchange, and digital signatures.

[These algorithms highlight the roles played by the apparent difficulty of]

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

[Two exponential-time integer-factoring algorithms are first covered]:

trial division and [Pollard’s rho method]. [This is followed by two]

sub-exponential algorithms based upon [Fermat’s factoring method]. [Dixon’s]

method uses random squares, but illustrates the basic concepts of the

relation-collection and the linear-algebra stages. [Next], [I introduce the]

[Quadratic] [Sieve] [Method] (QS[M) which brings the benefits of using small]

candidates for smoothness testing and of sieving.

[As the third module], [I formally define the discrete-logarithm problem] (DLP)

and its variants. [As a representative of the square-root methods for solving]

the DL[P, the baby-step-giant-step method is explained]. [Next], [I introduce the]

index calculus method (IC[M) as a general paradigm for solving the] DLP.

[Various stages of the basic] IC[M are explained both for prime fields and]

for extension fields of characteristic two.

+++ Total number of matches = 25

Note: Compare this with the output of: grep ’[A-Z][^A-Z]*[a-z]’ textfile.txt

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra



Practice exercises

1. Write a bash script that takes multiple arguments, and checks which of these arguments is/are Fibonacci

number(s).

2. Write a bash script that takes a positive integer as an argument, and add commas to separate thousands,

lakhs, and crores. For example, for input 123456, the output should be 1,23,456, and for input 123456789,

the output should be 12,34,56,789.

3. Write a bash script (similar to dirtree.sh) that recursively lists the entire file tree under a given directory. For

non-directories, the recursive call is not made. If no directory is supplied, take . as the root directory.

4. Write a bash script that takes two directories dir1 and dir2 as arguments, and prints the common names of

the files in the two directories.

5. Write a bash script that takes a directory as an argument, and keeps on listing every minute only the names

of the files in that directory, that are modified (after the last print). The first listing is that of all the files in

the directory. Modification includes new files, deleted files, and updated files.

6. Write a bash script that finds all the regular (that is, non-system) users in the system. Assume that regular

users have user IDs > 1000. (Read /etc/passwd.)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra


