
Systems Programming Laboratory, Spring 2023

Regular Expressions

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

March 6, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Regular expressions

• Same as those introduced in connection with regular languages in your FLAT course.

• Constructs are different.

• Used by less, grep, sed, awk, shells, and many text editors like vi and emacs.

• We use less to demonstrate the matches.

• Running with the –N option lets less show the line numbers.

• In the viewing mode, you can type / (forward slash) followed by a regular expression.

• All matches found are highlighted.

• Searches are made in each line.

• The newline character is not allowed in regular expressions.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Viewing matches with less

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Matching any character

• Period (.) matches any single character.

• The pattern a.g matches the following.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Matching a set of characters

• Delimit the set between [and].

• [Tt] matches upper- or lower-case T.

• [AEIOU] matches any upper-case vowel.

• [a-z] matches any lower-case letter.

• [a-zA-Z0-9] matches any alphanumeric character.

• The regular expression [A-Z][a-z][a-z]. gives the following result.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Negation of a set of characters

• Use ^ after [.

• [^] matches any non-space character.

• [^aeiouAEIOU] matches any character other than the vowels.

• [^a-zA-Z] matches any non-alphabetic character.

• The output for the search [^AEIOU][^a-zA-Z].....[a-drt] is given below.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Matching zero or more characters

• Use *.

• .* matches any string. ..* matches any non-empty string.

• [a-z]* matches any sequence of lower-case letters.

• [^a-zA-Z]* matches any sequence of non-alphabetic characters.

• Result of searching [A-Z][a-zA-Z]*[^] is given below.

• Longest possible matches are reported, starting as early as possible.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Match at the beginning or at the end of a string

• If you want the match to start from the beginning, use ^ as the first symbol.

• If you want the match to finish at the end, use $ as the last symbol.

• The pattern ^[A-Z][a-z]* matches the first word of a line if the line starts with a

capital letter.

• The pattern [a-z]*$ matches the last word of a line if the line ends with a

lower-case letter, and if the last word consists of lower-case letters only.

• The result for searching ^[A-Za-z,]*$ is given below.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Quoting the special characters

• Use \., \[, \], *, \^, \$, \\, and \/. The last one is used during substitution.

• - need not be quoted.

• [a-z]*\. matches the last word with the period in a sentence if the word consists of

lower-case letters only. If the last word contains characters other than the lower-case

letters, then the match starts after the last such character.

• The pattern [a-z]*-[a-z-]*.*\. matches as follows.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Systems Programming Laboratory, Spring 2023

Introduction to grep

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

March 6, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The Unix command grep

• Abbreviation of Global Regular Expression Print.

• Locates lines that contains matches of regular expression(s).

• May or may not highlight the match.

• Options of grep enable you to do a lot of tasks with the matched lines.

• You run grep as:

grep <OPTIONS> <PATTERN> <FILE(S)>

• The pattern is a regular expression.

• A regular expression may contain characters (like *) having special meanings to the

shell, so it is preferable to quote the pattern.

• Single (forward) quotes are recommended.

• Quoting also enables you to search for patterns containing space.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The input file used in the examples

The file textfile.txt
1 Abstract

2

3 This tutorial focuses on algorithms for factoring large composite integers

4 and for computing discrete logarithms in large finite fields. In order to

5 make the exposition self-sufficient, I start with some common and popular

6 public-key algorithms for encryption, key exchange, and digital signatures.

7 These algorithms highlight the roles played by the apparent difficulty of

8 solving the factoring and discrete-logarithm problems, for designing

9 public-key protocols.

10

11 Two exponential-time integer-factoring algorithms are first covered:

12 trial division and Pollard’s rho method. This is followed by two

13 sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

14 method uses random squares, but illustrates the basic concepts of the

15 relation-collection and the linear-algebra stages. Next, I introduce the

16 Quadratic Sieve Method (QSM) which brings the benefits of using small

17 candidates for smoothness testing and of sieving.

18

19 As the third module, I formally define the discrete-logarithm problem (DLP)

20 and its variants. As a representative of the square-root methods for solving

21 the DLP, the baby-step-giant-step method is explained. Next, I introduce the

22 index calculus method (ICM) as a general paradigm for solving the DLP.

23 Various stages of the basic ICM are explained both for prime fields and

24 for extension fields of characteristic two.

25

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Search examples

$ grep method textfile.txt

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

and its variants. As a representative of the square-root methods for solving

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$ grep ’method ’ textfile.txt

method uses random squares, but illustrates the basic concepts of the

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$ grep method[\.] textfile.txt

grep: Invalid regular expression

$ grep ’method[\.]’ textfile.txt

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$ grep ’[a-z]*-[a-z-]*.*\.’ textfile.txt

public-key algorithms for encryption, key exchange, and digital signatures.

public-key protocols.

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

relation-collection and the linear-algebra stages. Next, I introduce the

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Making searches for multiple patterns

• Use the option -e multiple times.

$ grep -e ’method’ -e ’algorithm’ textfile.txt

This tutorial focuses on algorithms for factoring large composite integers

public-key algorithms for encryption, key exchange, and digital signatures.

These algorithms highlight the roles played by the apparent difficulty of

Two exponential-time integer-factoring algorithms are first covered:

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

and its variants. As a representative of the square-root methods for solving

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$

• This option also helps you specify patterns starting with -.

$ grep ’-key’ textfile.txt

grep: invalid option - ’k’

Usage: grep [OPTION]... PATTERNS [FILE]...

Try ’grep -help’ for more information.

$ grep -e ’-key’ textfile.txt

public-key algorithms for encryption, key exchange, and digital signatures.

public-key protocols.

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The inverted search

• The option -v prints the lines that do not contain matches.

Lines not containing upper-case letters

$ grep -v ’[A-Z]’ textfile.txt

public-key algorithms for encryption, key exchange, and digital signatures.

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

method uses random squares, but illustrates the basic concepts of the

candidates for smoothness testing and of sieving.

for extension fields of characteristic two.

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Case-insensitive search using the option –i

$ grep ’method’ textfile.txt

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

and its variants. As a representative of the square-root methods for solving

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$ grep -i ’method’ textfile.txt

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

Quadratic Sieve Method (QSM) which brings the benefits of using small

and its variants. As a representative of the square-root methods for solving

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Word-based search using the option –w

Lines containing upper-case letters

$ grep ’[A-Z]’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self-sufficient, I start with some common and popular

These algorithms highlight the roles played by the apparent difficulty of

Two exponential-time integer-factoring algorithms are first covered:

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

relation-collection and the linear-algebra stages. Next, I introduce the

Quadratic Sieve Method (QSM) which brings the benefits of using small

As the third module, I formally define the discrete-logarithm problem (DLP)

and its variants. As a representative of the square-root methods for solving

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

Various stages of the basic ICM are explained both for prime fields and

$

Lines containing single-letter upper-case words

$ grep -w ’[A-Z]’ textfile.txt

make the exposition self-sufficient, I start with some common and popular

relation-collection and the linear-algebra stages. Next, I introduce the

As the third module, I formally define the discrete-logarithm problem (DLP)

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Printing line numbers and counting

• Use the option -n to print the line numbers before the printed lines.

Lines ending with non-alphabetic letters

$ grep ’[^a-zA-Z]$’ textfile.txt

public-key algorithms for encryption, key exchange, and digital signatures.

public-key protocols.

Two exponential-time integer-factoring algorithms are first covered:

candidates for smoothness testing and of sieving.

As the third module, I formally define the discrete-logarithm problem (DLP)

index calculus method (ICM) as a general paradigm for solving the DLP.

for extension fields of characteristic two.

$ grep -n ’[^a-zA-Z]$’ textfile.txt

6:public-key algorithms for encryption, key exchange, and digital signatures.

9:public-key protocols.

11:Two exponential-time integer-factoring algorithms are first covered:

17:candidates for smoothness testing and of sieving.

19:As the third module, I formally define the discrete-logarithm problem (DLP)

22:index calculus method (ICM) as a general paradigm for solving the DLP.

24:for extension fields of characteristic two.

$

• Use the option -c to print only the number of lines.

$ grep -c ’[^a-zA-Z]$’ textfile.txt

7

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Search recursively in subdirectories

• Use the option -r or -R.

Recursive search for nodep in the current directory (.)

$ grep -r ’nodep’ .

./libstaque/static/defs.h:typedef node *nodep;

./libstaque/static/stack.h:typedef nodep stack;

./libstaque/static/queue.h: nodep front;

./libstaque/static/queue.h: nodep back;

./libstaque/shared/defs.h:typedef node *nodep;

./libstaque/shared/stack.h:typedef nodep stack;

./libstaque/shared/queue.h: nodep front;

./libstaque/shared/queue.h: nodep back;

$

• Use the option -l only to print the names of the files that match. This is valid without

the flag -r or -R as well.

$ grep -r -l ’nodep’ .

./libstaque/static/defs.h

./libstaque/static/stack.h

./libstaque/static/queue.h

./libstaque/shared/defs.h

./libstaque/shared/stack.h

./libstaque/shared/queue.h

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

1. Write regular expressions for the following patterns.

(a) A consonant (in upper or lower case).

(b) A sequence of alphabetic letters containing no vowels.

(c) A sequence of alphabetic letters containing exactly one vowel.

(d) A sequence of alphabetic letters containing exactly two vowels.

(e) A sequence of alphabetic letters containing at least one vowel.

(f) A sequence containing no non-alphabetic characters.

(g) An entire line containing no non-alphabetic characters.

(h) An integer in the hexadecimal notation.

(i) A line containing at least ten spaces.

(j) A line containing at least ten non-space characters.

2. Write a grep command to find each of the following patterns in a text file.

(a) A line starting with a tab.

(b) The string foo or the string bar.

(c) Both the strings foo and bar.

(d) The string foo followed by the string bar.

(e) The string foo followed but not immediately by the string bar. Should the line "foobar bar"

match? Or the line "foo foobar"? What are the matches (if any)?

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

3. Write a grep command to locate all the lines in a C file, that contain printf. Note that this printf

should not come from fprintf or sprintf.

4. You have a C file program.c in which the strings (if any) do not contain the characters { and }. These

characters are used solely to indicate the beginnings and the ends of blocks. Assume also there are no

nested blocks in the same line, that is, situations like {{} or {}} or {{}{}} do not occur in a line. Write

grep commands by which you can identify the following types of lines in program.c.

(a) Lines in which a block is opened using { but not closed by } in the same line.

(b) Lines in which a block is closed using } but not opened by { in the same line.

(c) Lines in which a block is both opened by { and closed by } in the same line.

5. Professor Foojit has a text file foonums.txt in which each line contains five positive integers separated

by single spaces. There is no extra space at the beginning or at the end of any line. The integers may be

arbitrarily large, but do not contain leading zero digits. Professor Foojit considers all integers in the range

500-5000 unlucky. Out of these unlucky numbers, the number 876 is considered super-unlucky. Write

grep commands by which you can identify the following types of lines in foonums.txt.

(a) Lines that do not contain the super-unlucky number.

(b) Lines that do not contain any unlucky number.

(c) Lines that contain one or more unlucky numbers, neither of which is super-unlucky.

(d) Lines that contains the super-unlucky number along with (at least) another unlucky number (which

may again be super-unlucky).

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

6. Write a command by which you can find all the files in the current directory, with execute permission

of the owner. Use ls -l in tandem with grep. What about only the non-directory files with the same

permission?

7. As in the last exercise, write a command to find all the files in the current directory, whose sizes are at

least 1 MB (take this as 106 bytes) each.

8. Study the format of the file /etc/passwd. Write grep commands to find the users with the following

restrictions.

(a) Users with 4-digit user IDs.

(b) Users having bash as the login shell. Users with names like Foobashki Barlov or with login shells

like rbash must be excluded in the search.

9. Study what the option -o does for grep. What if you run grep with both the options -o and -n?

10. As some of the previous exercises illustrate, grep may need to be invoked with a lot of search patterns,

each with its -e option. Editing a long command line is sometimes very clumsy. Investigate how you can

write the individual search patterns in a text file, and let grep read from that file.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

