
Systems Programming Laboratory, Spring 2023

Introduction to gprof

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

February 3, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Profiling

• Debugging helps you remove implementation and logical bugs.

• You need a profiler to monitor the performance of your program.

• gprof is a profiler that helps you achieve that.

• gprof measures the relative performance of the functions in your program.

• The performance of a function in a program may be poor for two reasons.

• Each invocation of the function takes too much time.

• The function is called too many times.

• gprof helps you detect both.

• The flat profile gives detailed data on the running times of functions.

• The call graph generated by gprof tells which functions call which functions, and how

many times.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

How to run gprof

• First, compile your code with the –pg option.

gcc -Wall -pg myprog.c

This generates an executable file (it is a.out without the option –o).

• Then, you run the executable with the command-line parameters (if any).

./a.out

This creates a profile-data file with the default name gmon.out.

• Finally, call gprof with the executable file name and the profile-data file. If the data

file has the default name, you can omit it.

gprof ./a.out gmon.out

• You get a long output showing the following:

• The flat profile (timing profile).

• The call graph.

• A detailed instruction on how to interpret the above two tables.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Some options for calling gprof

–b Compact output (without the interpretation instructions)

–p Print only the flat profile

–P Do not print the flat profile

–pfname Print the flat profile of only the function fname

–q Print only the call graph

–Q Do not print the call graph

–z Print the information of all functions (even if not called and/or taking zero

time)

–l Make line-by-line profiling (compile with –g and –pg). Works with old gcc

versions. Use gcov instead.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Timing (or flat) profile

• A listing of the functions in your program with profiling information.

• The summary for each function shows the contributions of all invocations of the
function.

• % time: The percentage of time spent by the program while it was in that function

(excluding the time spent in other function calls, if any, made from this function).

• Self time: The time spent inside this function (excluding times spent in caller and called

functions). The listing is sorted in the decreasing order of these times.

• Cumulative time: The total self time spent by this function plus the self times of the

functions appearing above this function in the table.

• Calls: The number of times the function is called.

• Average self time per call: This is the self time divided by the number of calls, in s

(seconds), ms (milliseconds), us (microseconds), or ns (nanoseconds).

• Average total time per call: Self time plus the time spent in other function calls made

from this function, again in s, ms, us, or ns.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Limitations of gprof

• The estimates furnished by gprof are not fully accurate.

• gprof samples the execution of the program every 0.01 second (usually).

• Based on the samples, gprof makes a rough statistical analysis.

• You need to give gprof some time for gathering sufficiently many samples to make

meaningful estimates. Your program should run for at least a few seconds.

• You cannot change the default sampling rate.

• The % estimates should add up to 100, but it is usually not the case. The sum may be

less than or even larger than 100.

• Functions that are not called or that miss the samples are not listed (use the –z option

to list all).

• Sometimes you will see functions (like frame_dummy) not in your program. These

functions are called by the runtime system and should account for a very small

percentage of the total time.

• gprof handles function-level profiling only. For line-by-line profiling, use gcov.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

A sample output

$ gprof -b -p -z ./a.out

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ns/call ns/call name

81.05 0.58 0.58 93324100 6.25 6.25 nextnum

12.69 0.67 0.09 10000000 9.13 61.24 ishappy

4.23 0.71 0.03 main

0.70 0.71 0.01 frame_dummy

0.00 0.71 0.00 __do_global_dtors_aux

0.00 0.71 0.00 __gmon_start__

0.00 0.71 0.00 __libc_csu_fini

0.00 0.71 0.00 __libc_csu_init

0.00 0.71 0.00 _dl_relocate_static_pie

0.00 0.71 0.00 _fini

0.00 0.71 0.00 _init

0.00 0.71 0.00 _start

0.00 0.71 0.00 atexit

0.00 0.71 0.00 data_start

0.00 0.71 0.00 deregister_tm_clones

0.00 0.71 0.00 etext

0.00 0.71 0.00 register_tm_clones

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Happy numbers

• Let n be a positive integer.

• Keep on replacing n by the sum of the squares of the (decimal) digits of n.

• If n eventually reduces to 1, then the initial n (and all the intermediate values of n

generated in the process) is (are) happy.

• Otherwise, the sequence eventually becomes periodic and keeps on looping without

ever reaching 1. These numbers are unhappy or sad.

• 2023 is unhappy: 2023 → 22 +02 +22 +32 = 17 → 12 +72 = 50 → 25 → 29 →

85 → 89 → 145 → 42 → 20 → 4 → 16 → 37 → 58 → 89.

• 2026 is happy: 2026 → 22 +02 +22 +62 = 44 → 42 +42 = 32 → 13 → 10 → 1.

• Goal: To write an efficient function for checking whether a number is happy or not.

• We check its performance by calling it for all n in the range [1,100000].

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The functions

ishappy(n) Returns 1 if n is happy, 0 if not.

nextnum(n) returns the sum of the squares of the digits of n.

init(n) A data structure is initialized to record that no number is generated in the

sequence.

isvisited(A,n) Check whether n is already generated in the sequence.

markvisited(A,n) Mark in A that n is visited in the sequence.

main() This calls ishappy(n) for all n in the range 1 6 n 6 105, and prints n if and

only if the call returns 1.

Implementation of ishappy(n)

A = init(n);

markvisited(A,n);

while (1) {

n = nextnum(n);

if (!isvisited(A,n)) { markvisited(A,n); continue; }

if (n == 1) return 1; else return 0;

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The first attempt

• A is an array of size n+1 (or 200 if n < 100).

• init: Set all the cells A[i] = 0.

• isvisited(A,n): Just check whether A[n] = 1.

• markvisited(A,n): Set A[n] = 1.

Output of gprof

% cumulative self self total
time seconds seconds calls us/call us/call name
99.15 9.32 9.32 100000 93.20 93.20 init

0.11 9.33 0.01 1246773 0.01 0.01 isvisited
0.00 9.33 0.00 1246773 0.00 0.00 markvisited
0.00 9.33 0.00 1246773 0.00 0.00 nextnum
0.00 9.33 0.00 100000 0.00 93.30 ishappy

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The second attempt

• If n > 100, then nextnum(n)< n.

• If n < 100, then nextnum(n)6 92 +92 = 162.

• For all 32-bit integers, nextnum(n)6 32 +9×92 = 738.

• For n < 100, we take A of size 200.

• For n > 100, we take A of size 1000.

• In ishappy(n), first replace n by nextnum(n) once, and then proceed as before.

Output of gprof

% cumulative self self total
time seconds seconds calls us/call us/call name
90.17 1.51 1.51 1000000 1.51 1.51 init

4.84 1.59 0.08 12469340 0.01 0.01 nextnum
3.63 1.65 0.06 1000000 0.06 1.69 ishappy
1.82 1.68 0.03 11469340 0.00 0.00 markvisited

0.61 1.69 0.01 11469340 0.00 0.00 isvisited

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The third attempt

• We use a dictionary to store the numbers already generated in the sequence.

• A is now an array of size 1000. No need to initialize every cell of A.

• markvisited() appends to A each new number generated in the sequence. We also

externally store how many integers are saved in A.

• A is not necessarily sorted. So isvisited() makes a linear search in A.

• For a sequence of a few tens of numbers, more sophisticated data structures may fail

to produce better results.

Output of gprof

% cumulative self self total

time seconds seconds calls ns/call ns/call name
50.53 0.13 0.13 12469250 10.54 10.54 isvisited
23.32 0.19 0.06 12469250 4.86 4.86 nextnum
11.66 0.22 0.03 1000000 30.32 247.62 ishappy

7.77 0.24 0.02 1000000 20.21 20.21 init
3.89 0.25 0.01 main
1.94 0.26 0.01 12469250 0.41 0.41 markvisited

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The fourth attempt

• Algorithmic improvement suggested by your Discrete-Maths professor.

• Every happy number reduces to 1.

• Every unhappy number ends up in the cycle containing 4.

• No need to maintain a data structure A to store the numbers generated in the sequence.

• ishappy() keeps on replacing n by nextnum(n) until n becomes 1 or 4.

Output of gprof

% cumulative self self total
time seconds seconds calls ns/call ns/call name
82.27 0.54 0.54 93324100 5.82 5.82 nextnum

15.38 0.64 0.10 10000000 10.15 58.63 ishappy
1.54 0.65 0.01 main
0.77 0.66 0.01 frame_dummy

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Call graphs

• The records for each function are delimited by a line consisting of dashes.

• The line starting with [index number] is the primary line for a function.

• Above the primary line appears a listing of all caller function. If there are no caller

functions, a line containing <spontaneous> is printed.

• Below the primary line appears a listing of all called function.

• Each line gives information % time spent in that function, time spent inside that

function, time spent inside the called functions, and call count(s).

• The primary line has a single call count if it is a non-recursive function. If it makes

recursive calls to itself, two numbers appear as count1+count2, where count1 is the

number of non-recursive calls, and count2 is the number of recursive calls.

• For a caller or called function, there are two call counts count1/count2 indicating that

count1 calls in a total count2 calls are associated with the function in the primary line.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Understanding the call counts

void f ()

{

}

void g() {

f();

}

void h()

{

f();

g();

}

int main ()

{

int i;

for (i=0;i<100;++i) f();

for (i=0;i<200;++i) g();

for (i=0;i<300;++i) h();

}

main

g

f

h200

300

100
300

300
500

index % time self children called name

0.00 0.00 100/900 main [9]

0.00 0.00 300/900 h [3]

0.00 0.00 500/900 g [2]

[1] 0.0 0.00 0.00 900 f [1]

0.00 0.00 200/500 main [9]

0.00 0.00 300/500 h [3]

[2] 0.0 0.00 0.00 500 g [2]

0.00 0.00 500/900 f [1]

0.00 0.00 300/300 main [9]

[3] 0.0 0.00 0.00 300 h [3]

0.00 0.00 300/900 f [1]

0.00 0.00 300/500 g [2]

...

<spontaneous>

[9] 0.0 0.00 0.00 main [9]

0.00 0.00 300/300 h [3]

0.00 0.00 200/500 g [2]

0.00 0.00 100/900 f [1]

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Call graph with timing: Happy numbers (third attempt)

index % time self children called name

<spontaneous>

[1] 100.0 0.01 0.25 main [1]

0.03 0.22 1000000/1000000 ishappy [2]

0.03 0.22 1000000/1000000 main [1]

[2] 96.1 0.03 0.22 1000000 ishappy [2]

0.13 0.00 12469250/12469250 isvisited [3]

0.06 0.00 12469250/12469250 nextnum [4]

0.02 0.00 1000000/1000000 init [5]

0.01 0.00 12469250/12469250 markvisited [6]

0.13 0.00 12469250/12469250 ishappy [2]

[3] 51.0 0.13 0.00 12469250 isvisited [3]

0.06 0.00 12469250/12469250 ishappy [2]

[4] 23.5 0.06 0.00 12469250 nextnum [4]

0.02 0.00 1000000/1000000 ishappy [2]

[5] 7.8 0.02 0.00 1000000 init [5]

0.01 0.00 12469250/12469250 ishappy [2]

[6] 2.0 0.01 0.00 12469250 markvisited [6]

...

Index by function name

[5] init [3] isvisited [6] markvisited

[2] ishappy [1] main [4] nextnum

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Recursive call graph: Fibonacci numbers

• We use the following recursive implementation.

int Fib (int n)

{

if (n < 0) return -1;

if (n == 0) return 0;

if (n == 1) return 1;

return Fib(n-1) + Fib(n-2);

}

• From main(), we call Fib(32).

Call graph by gprof

index % time self children called name

7049154 Fib [1]

0.01 0.00 1/1 main [2]

[1] 100.0 0.01 0.00 1+7049154 Fib [1]

7049154 Fib [1]

<spontaneous>

[2] 100.0 0.00 0.01 main [2]

0.01 0.00 1/1 Fib [1]

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Recursive call graph: Fibonacci numbers with memoization

• In main(), we initialize each element of an array F[0 . . .n] to −1.

• We pass F alongside n to Fib.

• In Fib(n,F), we first check if F[n]> 0. If so, we return this value.

• Otherwise, we set F[n] (direct assignment for n = 0,1, recursive calls for n > 2), and

return F[n].

• The main function calls Fib(32,F).

Call graph by gprof

index % time self children called name

62 Fib [1]

0.00 0.00 1/1 main [7]

[1] 0.0 0.00 0.00 1+62 Fib [1]

62 Fib [1]

<spontaneous>

[7] 0.0 0.00 0.00 main [7]

0.00 0.00 1/1 Fib [1]

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

1. Your boss gives you an executable file secretapp without the source code, and asks you to profile the

application. The program has been compiled by the -pg flag, so gprof can handle the executable. You

run the program, and find that it takes about a second for each run. You know that gprof requires a total

running time of ten seconds (or more) to generate a meaningful profile. But you cannot add a loop to run

the body of the main function ten times. Investigate how you can club together the profiling data of ten

independent runs of secretapp in order to solve your problem.

2. Let n be a positive integer. Assume that n > 1. A proper divisor d of n is a divisor of n satisfying

1 < d < n. You write the following program to compute the smallest and the largest proper divisors of all

n in the range 1 < n < N. A prime number n does not have a proper divisor, so we take both the smallest

and the largest proper divisors of n to be 0. Choose N such that the program runs for a few seconds.

int spd (int n)

{

int d, s;

s = sqrt(n);

for (d = 2; d < s; ++d) {

if (n % d == 0) return d;

}

return 0;

}

int lpd (int n)

{

int d;

for (d = n / 2; d > 1; --d) {

if (n % d == 0) return d;

}

return 0;

}

int main ()

{

int n, N = ...;

for (n=2; n<=N; ++n) {

spd(n);

lpd(n);

}

}

Using gprof, identify the source(s) of inefficiency in the program. Repair the problem.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

3. You use gprof to get the call graph of the following C program.

void f1(), f2(), f3();

void f1() { f2(); f3(); }

void f2() { f3(); }

void f3() { }

int main()

{

int x, y, z, i;

scanf("%d%d%d", &x, &y, &z);

for (i=0; i<x; ++i) { f1(); f2(); }

for (i=0; i<y; ++i) { f1(); f3(); }

for (i=0; i<z; ++i) { f2(); f3(); }

}

A part (contiguous) of the output supplied by gprof is given below.

--

0.00 0.00 7/19 main [9]

0.00 0.00 12/19 f1 [3]

[2] 0.0 0.00 0.00 19 f2 [2]

0.00 0.00 19/40 f3 [1]

--

Derive what values of x, y and z are supplied by the user.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

4. You use gprof to get the call graph of the following C program.

void f (int n, int x)

{

if (n > 0) f (n - x, x);

}

int main ()

{

int x;

printf("x = "); scanf("%d", &x);

f(100,x);

}

If the following line appears in the gprof output, what is the value of x is supplied by the user? Explain.

[1] 0.0 0.00 0.00 1+12 f [1]

5. Consider the following mutually recursive functions.

void f (int n) { if (n > 0) g(n-1); }

void g (int n) { if (n > 0) h(n-2); }

void h (int n) { if (n > 0) f(n-3); }

The main() function calls f(100), and does nothing else. Study the call graph supplied by gprof for this

program.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

