
Systems Programming Laboratory, Spring 2023

Introduction to gdb

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

February 17, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Why debuggers?

• Writing error-free codes (particularly large ones) is every programmer’s dream.

• Compilation errors

• Logical errors

• Runtime errors

• The compiler is “never” faulty.

• If your program does not run, question your understanding and your code first.

• Debuggers help you out there.

• You can step through your code line by line.

• You can keep on watching variables.

• No need to write diagnostic printf’s.

• . . .

• The GNU debugger (gdb) is a popular choice of this day.

• Several graphic debuggers (like xxgdb) are built on top of gdb.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

First example: Area of a triangle

tarea.c
#include <stdio.h>

#include <stdlib.h>

int main ()

{

int x1, y1, x2, y2, x3, y3;

double area;

printf("Program to calculate the area of a triangle with integer coordinates\n");

printf("Enter the coordinates of the first corner: ");

scanf("%d%d", &x1, &y1);

printf("Enter the coordinates of the second corner: ");

scanf("%d%d", &x2, &y2);

printf("Enter the coordinates of the third corner: ");

scanf("%d%d", &x3, &y3);

area = x1 * (y2 - y3);

area += x2 * (y1 - y3);

area += x3 * (y1 - y2);

if (area < 0) area = -area;

area /= 2;

printf("Area of the triangle is %lf\n", area);

exit(0);

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Running codes with gdb

$ gcc -Wall -g tarea.c

$ gdb ./a.out

GNU gdb (Ubuntu 9.2-0ubuntu1 20.04) 9.2

Copyright (C) 2020 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./a.out...

(gdb) run

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Program to calculate the area of a triangle with integer coordinates

Enter the coordinates of the first corner: 3 8

Enter the coordinates of the second corner: 6 -7

Enter the coordinates of the third corner: -1 5

Area of the triangle is 16.500000

[Inferior 1 (process 6730) exited normally]

(gdb) quit

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Listing your code

• list: Keep on listing your code, ten lines at a time.

• list m,n: List from Line m to Line n of your code.

• list k: List ten lines with Line k at the center.

(gdb) list

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main ()

5 {

6 int x1, y1, x2, y2, x3, y3;

7 double area;

8

9 printf("Program to calculate the area of a triangle with integer coordinates\n");

10

(gdb) list

11 printf("Enter the coordinates of the first corner: ");

12 scanf("%d%d", &x1, &y1);

13 printf("Enter the coordinates of the second corner: ");

14 scanf("%d%d", &x2, &y2);

15 printf("Enter the coordinates of the third corner: ");

16 scanf("%d%d", &x3, &y3);

17

18 area = x1 * (y2 - y3);

19 area += x2 * (y1 - y3);

20 area += x3 * (y1 - y2);

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Listing your code: Continued

(gdb) list

21 if (area < 0) area = -area;

22 area /= 2;

23

24 printf("Area of the triangle is %lf\n", area);

25

26 exit(0);

27 }

(gdb) list

Line number 28 out of range; tarea.c has 27 lines.

(gdb) list 15

10

11 printf("Enter the coordinates of the first corner: ");

12 scanf("%d%d", &x1, &y1);

13 printf("Enter the coordinates of the second corner: ");

14 scanf("%d%d", &x2, &y2);

15 printf("Enter the coordinates of the third corner: ");

16 scanf("%d%d", &x3, &y3);

17

18 area = x1 * (y2 - y3);

19 area += x2 * (y1 - y3);

(gdb) list 18,22

18 area = x1 * (y2 - y3);

19 area += x2 * (y1 - y3);

20 area += x3 * (y1 - y2);

21 if (area < 0) area = -area;

22 area /= 2;

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Set a breakpoint and step through your code

(gdb) break 11

Breakpoint 1 at 0x11d0: file tarea.c, line 11.

(gdb) run

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Program to calculate the area of a triangle with integer coordinates

Breakpoint 1, main () at tarea.c:11

11 printf("Enter the coordinates of the first corner: ");

(gdb) next

12 scanf("%d%d", &x1, &y1);

(gdb) next

Enter the coordinates of the first corner: 3 8

13 printf("Enter the coordinates of the second corner: ");

(gdb) next

14 scanf("%d%d", &x2, &y2);

(gdb) next

Enter the coordinates of the second corner: 6 -7

15 printf("Enter the coordinates of the third corner: ");

(gdb) next

16 scanf("%d%d", &x3, &y3);

(gdb) next

Enter the coordinates of the third corner: -1 5

18 area = x1 * (y2 - y3);

(gdb) next

19 area += x2 * (y1 - y3);

(gdb) continue

Continuing.

Area of the triangle is 16.500000

[Inferior 1 (process 7195) exited normally]

(gdb) q

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Some notes about gdb

• Command shortcuts: You do not have to type the entire command (like list or next).

Certain abbreviations are allowed. Here is a short list.

b break

bt backtrace

c continue

d delete

dis disable

disp display

do down

en enable

f frame

fin finish

h help

i info

l list

n next

p print

q quit

ret return

r run

s step

• Command name abbreviations are allowed if unambiguous.

• Hit return to repeat the last command.

• The unaltered source file must be present for gdb to run correctly.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

More about breakpoints

• You can set multiple breakpoints.

• Type

info break

to list all the breakpoints.

• continue stops until the next breakpoint or the end of the program

• Other things that you can do with breakpoints:

• Disable a breakpoint

• Enable a disabled breakpoint

• Delete a breakpoint

(gdb) break main

Breakpoint 1 at 0x11a9: file tarea.c, line 5.

(gdb) break 11

Breakpoint 2 at 0x11d0: file tarea.c, line 11.

(gdb) break 18

Breakpoint 3 at 0x1257: file tarea.c, line 18.

(gdb) break 24

Breakpoint 4 at 0x12e5: file tarea.c, line 24.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Breakpoint examples

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00000000000011a9 in main at tarea.c:5

2 breakpoint keep y 0x00000000000011d0 in main at tarea.c:11

3 breakpoint keep y 0x0000000000001257 in main at tarea.c:18

4 breakpoint keep y 0x00000000000012e5 in main at tarea.c:24

(gdb) disable 3

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00000000000011a9 in main at tarea.c:5

2 breakpoint keep y 0x00000000000011d0 in main at tarea.c:11

3 breakpoint keep n 0x0000000000001257 in main at tarea.c:18

4 breakpoint keep y 0x00000000000012e5 in main at tarea.c:24

(gdb) enable 3

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00000000000011a9 in main at tarea.c:5

2 breakpoint keep y 0x00000000000011d0 in main at tarea.c:11

3 breakpoint keep y 0x0000000000001257 in main at tarea.c:18

4 breakpoint keep y 0x00000000000012e5 in main at tarea.c:24

(gdb) delete 3

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00000000000011a9 in main at tarea.c:5

2 breakpoint keep y 0x00000000000011d0 in main at tarea.c:11

4 breakpoint keep y 0x00000000000012e5 in main at tarea.c:24

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Printing variables and expressions

(gdb) break 18

Breakpoint 1 at 0x1257: file tarea.c, line 18.

(gdb) run

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Program to calculate the area of a triangle with integer coordinates

Enter the coordinates of the first corner: 3 8

Enter the coordinates of the second corner: 6 -7

Enter the coordinates of the third corner: -1 5

Breakpoint 1, main () at tarea.c:18

18 area = x1 * (y2 - y3);

(gdb) print x1

$1 = 3

(gdb) print x2

$2 = 6

(gdb) print x3

$3 = -1

(gdb) print x1 + x2 + x3

$4 = 8

(gdb) print x1 + x2 * x3

$5 = -3

(gdb) print x1 * (y2 - y3) + x2 * (y1 - y3) + x3 * (y1 - y2)

$6 = -33

(gdb) print $6 / 2

$7 = -16

(gdb)

Value history: The printed values are stored as $1,$2, . . . , and can be accessed later.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Watching variables after every step
(gdb) break 16

Breakpoint 1 at 0x123b: file tarea.c, line 16.

(gdb) run

...

Breakpoint 1, main () at tarea.c:16

16 scanf("%d%d", &x3, &y3);

(gdb) n

Enter the coordinates of the third corner: -1 5

18 area = x1 * (y2 - y3);

(gdb) display area

1: area = 6.953355807476115e-310

(gdb) n

19 area += x2 * (y1 - y3);

1: area = -36

(gdb) n

20 area += x3 * (y1 - y2);

1: area = -18

(gdb) n

21 if (area < 0) area = -area;

1: area = -33

(gdb) n

22 area /= 2;

1: area = 33

(gdb) n

24 printf("Area of the triangle is %lf\n", area);

1: area = 16.5

(gdb) continue

Continuing.

Area of the triangle is 16.500000

[Inferior 1 (process 8608) exited normally]

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Setting variables: The program

setvar.c
#include <stdio.h>

#include <stdlib.h>

int main ()

{

int a, b;

a = 5;

b = 8;

printf("max(%d,%d) = %d\n", a, b, (a >= b) ? a : b);

printf("max(%d,%d) = %d\n", a, b, (a >= b) ? a : b);

exit(0);

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Setting variables: Run gdb

(gdb) break main

Breakpoint 1 at 0x1169: file setvar.c, line 5.

(gdb) n

The program is not being run.

(gdb) run

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Breakpoint 1, main () at setvar.c:5

5 {

(gdb) n

8 a = 5;

(gdb) n

9 b = 8;

(gdb) n

10 printf("max(%d,%d) = %d\n", a, b, (a >= b) ? a : b);

(gdb) n

max(5,8) = 8

11 printf("max(%d,%d) = %d\n", a, b, (a >= b) ? a : b);

(gdb) set var b = 2

(gdb) print b

$1 = 2

(gdb) n

max(5,2) = 5

12 exit(0);

(gdb) n

[Inferior 1 (process 12878) exited normally]

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Conditions and loops

• Nothing special needs to be done.

• Stepping at the end of the loop goes back to the start of the loop.

• When the loop breaks, the line following the loop is executed.

average.c
#include <stdio.h>

#include <stdlib.h>

int main ()

{

int n, x, sum;

n = sum = 0;

printf("Keep on entering non-negative integers. Enter a negative integer to end.\n");

while (1) {

printf("Next number: "); scanf("%d", &x);

if (x < 0) break;

++n; sum += x;

}

printf("Average of the numbers entered is %lf\n", (double)sum / (double)n);

exit(0);

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Conditions and loops: Example run

(gdb) break main

Breakpoint 1 at 0x11a9: file average.c, line 5.

(gdb) run

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Breakpoint 1, main () at average.c:5

5 {

(gdb) n

8 n = sum = 0;

(gdb) n

9 printf("Keep on entering non-negative integers. Enter a negative integer to end.\n");

(gdb) n

Keep on entering non-negative integers. Enter a negative integer to end.

11 printf("Next number: "); scanf("%d", &x);

(gdb) n

Next number: 5

12 if (x < 0) break;

(gdb) n

13 ++n; sum += x;

(gdb) n

11 printf("Next number: "); scanf("%d", &x);

(gdb) n

Next number: 8

12 if (x < 0) break;

(gdb) n

13 ++n; sum += x;

(gdb) n

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Conditions and loops: Example run (Continued)

11 printf("Next number: "); scanf("%d", &x);

(gdb) n

Next number: 4

12 if (x < 0) break;

(gdb) n

13 ++n; sum += x;

(gdb) n

11 printf("Next number: "); scanf("%d", &x);

(gdb) n

Next number: -1

12 if (x < 0) break;

(gdb) n

15 printf("Average of the numbers entered is %lf\n", (double)sum / (double)n);

(gdb) n

Average of the numbers entered is 5.666667

16 exit(0);

(gdb) n

[Inferior 1 (process 10883) exited normally]

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Function calls: next and step

• next does not go into function calls.

• step goes into function calls.

• If you want to go into recursive calls, use steps before any such call.

• finish or return leaves the function without further stepping.

• finish continues normally to the end of the function, prints the returned value, and

adds this value to the value history.

• return leaves the function immediately after you ask gdb to do so.

• You may set an explicit breakpoint at a function name.

• Except for function calls, step and next work the same way.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

A program with a non-recursive function

TAREA.c
#include <stdio.h>

#include <stdlib.h>

double tarea (int x1, int y1, int x2, int y2, int x3, int y3)

{

double area;

area = x1 * (y2 - y3);

area += x2 * (y1 - y3);

area += x3 * (y1 - y2);

if (area < 0) area = -area;

area /= 2;

return area;

}

int main ()

{

int x1, y1, x2, y2, x3, y3;

double area;

printf("Program to calculate the area of a triangle with integer coordinates\n");

printf("Enter the coordinates of the first corner: "); scanf("%d%d", &x1, &y1);

printf("Enter the coordinates of the second corner: "); scanf("%d%d", &x2, &y2);

printf("Enter the coordinates of the third corner: "); scanf("%d%d", &x3, &y3);

area = tarea(x1,y1,x2,y2,x3,y3);

printf("Area of the triangle is %lf\n", area);

exit(0);

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Skip going inside the function by next

(gdb) break main

Breakpoint 1 at 0x124e: file TAREA.c, line 17.

(gdb) r

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Breakpoint 1, main () at TAREA.c:17

17 {

(gdb) next

21 printf("Program to calculate the area of a triangle with integer coordinates\n");

(gdb) next

Program to calculate the area of a triangle with integer coordinates

22 printf("Enter the coordinates of the first corner: "); scanf("%d%d", &x1, &y1);

(gdb) next

Enter the coordinates of the first corner: 3 8

23 printf("Enter the coordinates of the second corner: "); scanf("%d%d", &x2, &y2);

(gdb) next

Enter the coordinates of the second corner: 6 -7

24 printf("Enter the coordinates of the third corner: "); scanf("%d%d", &x3, &y3);

(gdb) next

Enter the coordinates of the third corner: -1 5

25 area = tarea(x1,y1,x2,y2,x3,y3);

(gdb) next

26 printf("Area of the triangle is %lf\n", area);

(gdb) next

Area of the triangle is 16.500000

27 exit(0);

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Step into the function

...

(gdb) next

Enter the coordinates of the third corner: -1 5

25 area = tarea(x1,y1,x2,y2,x3,y3);

(gdb) step

tarea (x1=32767, y1=-7504, x2=21845, y2=1431655248, x3=32767, y3=-136046822) at TAREA.c:5

5 {

(gdb) next

8 area = x1 * (y2 - y3);

(gdb) print area

$1 = 6.953355807476115e-310

(gdb) next

9 area += x2 * (y1 - y3);

(gdb) print area

$2 = -36

(gdb) next

10 area += x3 * (y1 - y2);

(gdb) print area

$3 = -18

(gdb) finish

Run till exit from #0 tarea (x1=3, y1=8, x2=6, y2=-7, x3=-1, y3=5) at TAREA.c:10

0x000055555555531c in main () at TAREA.c:25

25 area = tarea(x1,y1,x2,y2,x3,y3);

Value returned is $4 = 16.5

(gdb) n

26 printf("Area of the triangle is %lf\n", area);

(gdb) n

Area of the triangle is 16.500000

27 exit(0);

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Forced return from a function

...

(gdb) next

Enter the coordinates of the third corner: -1 5

25 area = tarea(x1,y1,x2,y2,x3,y3);

(gdb) step

tarea (x1=32767, y1=-7504, x2=21845, y2=1431655248, x3=32767, y3=-136046822) at TAREA.c:5

5 {

(gdb) next

8 area = x1 * (y2 - y3);

(gdb) print area

$1 = 6.953355807476115e-310

(gdb) next

9 area += x2 * (y1 - y3);

(gdb) print area

$2 = -36

(gdb) next

10 area += x3 * (y1 - y2);

(gdb) print area

$3 = -18

(gdb) return

Make tarea return now? (y or n) y

#0 0x000055555555531c in main () at TAREA.c:25

25 area = tarea(x1,y1,x2,y2,x3,y3);

(gdb) n

26 printf("Area of the triangle is %lf\n", area);

(gdb) n

Area of the triangle is -18.000000

27 exit(0);

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Program with a recursive function

fib.c
#include <stdio.h>

#include <stdlib.h>

int Fib (int n)

{

if (n < 0) return -1;

if (n <= 1) return n;

return Fib(n-1) + Fib(n-2);

}

int main ()

{

int n, f;

n = 8;

f = Fib(n);

printf("F(%d) = %d\n", n, f);

exit(0);

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Program with a recursive function: Line numbers

(gdb) l

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int Fib (int n)

5 {

6 if (n < 0) return -1;

7 if (n <= 1) return n;

8 return Fib(n-1) + Fib(n-2);

9 }

10

(gdb) l

11 int main ()

12 {

13 int n, f;

14

15 n = 8;

16 f = Fib(n);

17 printf("F(%d) = %d\n", n, f);

18 exit(0);

19 }

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Function call with next

(gdb) break main

Breakpoint 1 at 0x11b6: file fib.c, line 12.

(gdb) run

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Breakpoint 1, main () at fib.c:12

12 {

(gdb) n

15 n = 8;

(gdb) n

16 f = Fib(n);

(gdb) n

17 printf("F(%d) = %d\n", n, f);

(gdb) n

F(8) = 21

18 exit(0);

(gdb) n

[Inferior 1 (process 12316) exited normally]

(gdb) q

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Function call with only one step

(gdb) break main

Breakpoint 1 at 0x11b6: file fib.c, line 12.

(gdb) run

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Breakpoint 1, main () at fib.c:12

12 {

(gdb) n

15 n = 8;

(gdb) n

16 f = Fib(n);

(gdb) step

Fib (n=21845) at fib.c:5

5 {

(gdb) n

6 if (n < 0) return -1;

(gdb) n

7 if (n <= 1) return n;

(gdb) n

8 return Fib(n-1) + Fib(n-2);

(gdb) n

9 }

(gdb) n

main () at fib.c:17

17 printf("F(%d) = %d\n", n, f);

(gdb) n

F(8) = 21

18 exit(0);

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Enter recursive calls with step

Breakpoint 1, main () at fib.c:12

12 {

(gdb) n

15 n = 8;

(gdb) n

16 f = Fib(n);

(gdb) s

Fib (n=21845) at fib.c:5

5 {

(gdb) n

6 if (n < 0) return -1;

(gdb) n

7 if (n <= 1) return n;

(gdb) n

8 return Fib(n-1) + Fib(n-2);

(gdb) s

Fib (n=0) at fib.c:5

5 {

(gdb) n

6 if (n < 0) return -1;

(gdb) n

7 if (n <= 1) return n;

(gdb) n

8 return Fib(n-1) + Fib(n-2);

(gdb) s

Fib (n=0) at fib.c:5

5 {

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Set breakpoint with function name

(gdb) break main

Breakpoint 1 at 0x11b6: file fib.c, line 12.

(gdb) break Fib

Breakpoint 2 at 0x1169: file fib.c, line 5.

(gdb) run

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Breakpoint 1, main () at fib.c:12

12 {

(gdb) n

15 n = 8;

(gdb) n

16 f = Fib(n);

(gdb) n

Breakpoint 2, Fib (n=21845) at fib.c:5

5 {

(gdb) n

6 if (n < 0) return -1;

(gdb) n

7 if (n <= 1) return n;

(gdb) n

8 return Fib(n-1) + Fib(n-2);

(gdb) n

Breakpoint 2, Fib (n=0) at fib.c:5

5 {

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Stepping into an external function

Stepping in average.c
(gdb) break main

Breakpoint 1 at 0x11a9: file average.c, line 5.

(gdb) run

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Breakpoint 1, main () at average.c:5

5 {

(gdb) s

8 n = sum = 0;

(gdb) s

9 printf("Keep on entering non-negative integers. Enter a negative integer to end.\n");

(gdb) s

__GI__IO_puts (

str=0x555555556008 "Keep on entering non-negative integers. Enter a negative integer to end.")

at ioputs.c:33

33 ioputs.c: No such file or directory.

(gdb) s

35 in ioputs.c

(gdb) s

36 in ioputs.c

(gdb) s

__lll_cas_lock (futex=0x7ffff7fa74c0 <_IO_stdfile_1_lock>)

at ../sysdeps/unix/sysv/linux/x86/lowlevellock.h:47

47 ../sysdeps/unix/sysv/linux/x86/lowlevellock.h: No such file or directory.

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The call stack

• A function call defines a frame.

• Commands to work with frames:

• frame: List information about the current frame

• info frame: List more detailed information about the current frame

• backtrace: Print the entire stack from top to bottom

• up: Move one step up in the stack (toward the stack bottom, up in the call tree)

• down: Move one step down in the stack (toward the stack top, down in the call tree)

• Note: up/down does not change the execution to go up or down. You only move

inside the stack, and can see the details of the frames in the stack.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Program to demonstrate the call stack

callstack.c
#include <stdio.h>

#include <stdlib.h>

void h (int n)

{

printf("+++ Called h(%d)\n", n);

}

void g (int n)

{

if (n >= 3) h(n-3);

}

void f (int n)

{

while (n >= 0) { g(n); n -= 2; }

}

int main ()

{

int i;

for (i=0; i<5; ++i) f(i);

exit(0);

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The call tree

main()

f(4)f(0)

g(0) g(1) g(4) g(2) g(0)

f(1)

g(1) g(2)

h(1)

g(0)

f(2) f(3)

printf()

g(3)

h(0)

printf()

Set breakpoint here

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

View the call stack

(gdb) break h

Breakpoint 1 at 0x1169: file callstack.c, line 5.

(gdb) run

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Breakpoint 1, h (n=0) at callstack.c:5

5 {

(gdb) backtrace

#0 h (n=0) at callstack.c:5

#1 0x00005555555551b3 in g (n=3) at callstack.c:11

#2 0x00005555555551d1 in f (n=3) at callstack.c:16

#3 0x00005555555551fe in main () at callstack.c:23

(gdb) next

6 printf("+++ Called h(%d)\n", n);

(gdb) step

__printf (format=0x555555556004 "+++ Called h(%d)\n") at printf.c:28

28 printf.c: No such file or directory.

(gdb) backtrace

#0 __printf (format=0x555555556004 "+++ Called h(%d)\n") at printf.c:28

#1 0x000055555555518e in h (n=0) at callstack.c:6

#2 0x00005555555551b3 in g (n=3) at callstack.c:11

#3 0x00005555555551d1 in f (n=3) at callstack.c:16

#4 0x00005555555551fe in main () at callstack.c:23

(gdb) continue

Continuing.

+++ Called h(0)

Breakpoint 1, h (n=1) at callstack.c:5

5 {

(gdb) backtrace

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

View the call stack (continued)

#0 h (n=1) at callstack.c:5

#1 0x00005555555551b3 in g (n=4) at callstack.c:11

#2 0x00005555555551d1 in f (n=4) at callstack.c:16

#3 0x00005555555551fe in main () at callstack.c:23

(gdb) up

#1 0x00005555555551b3 in g (n=4) at callstack.c:11

11 if (n >= 3) h(n-3);

(gdb) up

#2 0x00005555555551d1 in f (n=4) at callstack.c:16

16 while (n >= 0) { g(n); n -= 2; }

(gdb) info frame

Stack level 2, frame at 0x7fffffffe2a0:

rip = 0x5555555551d1 in f (callstack.c:16); saved rip = 0x5555555551fe

called by frame at 0x7fffffffe2c0, caller of frame at 0x7fffffffe280

source language c.

Arglist at 0x7fffffffe278, args: n=4

Locals at 0x7fffffffe278, Previous frame’s sp is 0x7fffffffe2a0

Saved registers:

rbp at 0x7fffffffe290, rip at 0x7fffffffe298

(gdb) up

#3 0x00005555555551fe in main () at callstack.c:23

23 for (i=0; i<5; ++i) f(i);

(gdb) up

Initial frame selected; you cannot go up.

(gdb) down 2

#1 0x00005555555551b3 in g (n=4) at callstack.c:11

11 if (n >= 3) h(n-3);

(gdb) continue

Continuing.

+++ Called h(1)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Call stack in recursive Fibonacci program

(gdb) break Fib

Breakpoint 1 at 0x1169: file fib.c, line 5.

(gdb) run

Starting program: /home/abhij/IITKGP/course/lab/SPL/Spring22/prog/gdb/a.out

Breakpoint 1, Fib (n=21845) at fib.c:5

5 {

(gdb) continue 7

Will ignore next 6 crossings of breakpoint 1. Continuing.

Breakpoint 1, Fib (n=0) at fib.c:5

5 {

(gdb) bt

#0 Fib (n=0) at fib.c:5

#1 0x000055555555519e in Fib (n=2) at fib.c:8

#2 0x000055555555519e in Fib (n=3) at fib.c:8

#3 0x000055555555519e in Fib (n=4) at fib.c:8

#4 0x000055555555519e in Fib (n=5) at fib.c:8

#5 0x000055555555519e in Fib (n=6) at fib.c:8

#6 0x000055555555519e in Fib (n=7) at fib.c:8

#7 0x000055555555519e in Fib (n=8) at fib.c:8

#8 0x00005555555551d3 in main () at fib.c:16

(gdb) c

Continuing.

Breakpoint 1, Fib (n=1) at fib.c:5

5 {

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Call stack in recursive Fibonacci program (continued)

(gdb) bt

#0 Fib (n=1) at fib.c:5

#1 0x00005555555551ad in Fib (n=2) at fib.c:8

#2 0x000055555555519e in Fib (n=3) at fib.c:8

#3 0x000055555555519e in Fib (n=4) at fib.c:8

#4 0x000055555555519e in Fib (n=5) at fib.c:8

#5 0x000055555555519e in Fib (n=6) at fib.c:8

#6 0x000055555555519e in Fib (n=7) at fib.c:8

#7 0x000055555555519e in Fib (n=8) at fib.c:8

#8 0x00005555555551d3 in main () at fib.c:16

(gdb) c

Continuing.

Breakpoint 1, Fib (n=2) at fib.c:5

5 {

(gdb) bt

#0 Fib (n=2) at fib.c:5

#1 0x00005555555551ad in Fib (n=3) at fib.c:8

#2 0x000055555555519e in Fib (n=4) at fib.c:8

#3 0x000055555555519e in Fib (n=5) at fib.c:8

#4 0x000055555555519e in Fib (n=6) at fib.c:8

#5 0x000055555555519e in Fib (n=7) at fib.c:8

#6 0x000055555555519e in Fib (n=8) at fib.c:8

#7 0x00005555555551d3 in main () at fib.c:16

(gdb)

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

If you are lost/inquisitive, ask for help

(gdb) help

List of classes of commands:

aliases - Aliases of other commands.

breakpoints - Making program stop at certain points.

data - Examining data.

files - Specifying and examining files.

internals - Maintenance commands.

obscure - Obscure features.

running - Running the program.

stack - Examining the stack.

status - Status inquiries.

support - Support facilities.

tracepoints - Tracing of program execution without stopping the program.

user-defined - User-defined commands.

Type "help" followed by a class name for a list of commands in that class.

Type "help all" for the list of all commands.

Type "help" followed by command name for full documentation.

Type "apropos word" to search for commands related to "word".

Type "apropos -v word" for full documentation of commands related to "word".

Command name abbreviations are allowed if unambiguous.

(gdb) help step

Step program until it reaches a different source line.

Usage: step [N]

Argument N means step N times (or till program stops for another reason).

(gdb) help set var

Evaluate expression EXP and assign result to variable VAR.

Usage: set variable VAR = EXP

...

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

1. Explain how you can do the following tasks using the list directive of gdb.

(a) Start the listing of a specified function.

(b) Change the number of lines printed in each list directive.

(c) List a file backward. (You have a 1000-line file. Normal listing prints lines 1–10, 11–20, 21–30, . . . ,

991–1000. You want to list lines 991–1000, 981–990, . . . , 11–20, 1–10 in that order. You should avoid

specifying the line numbers explicitly.)

2. You have written a program in four .c files. The three files part1.c, part2.c and part3.c implement

some functions. The file allparts.c contains the main function (along possibly with some others). You

include the individual parts as #include "partx.c" in allparts.c. Show how you should compile

to generate the final executable file a.out with debugging enabled. You run this using gdb. If you use

the list directive, what do you see? Explain how you can list the individual part files partx.c (with line

numbers). Also explain how you can set breakpoints at specified line numbers in the part files.

3. You have the same situation as in the previous exercise. But now, you do not #include "partx.c" in

allparts.c. You instead generate individual object files part1.o, part2.o, and part3.o. Finally,

you combine these object files and allparts.c to generate an a.out with debugging enabled. Mention

the compilation commands you use in the process. You run a.out using gdb. If you use the list directive,

what do you see? Explain how you can list the individual part files partx.c (with line numbers). Also

explain how you can set breakpoints at specified line numbers in the part files.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

4. Repeat the last two exercises under the assumption that the part files partx.c reside in a subdirectory.

5. How can you load or replace an executable file for running, from the command prompt of gdb?

6. How can you re-run a program in gdb from the beginning? What happens to the breakpoints set in the

earlier run? The values of the variables set in the earlier run? The value history?

7. How can you print the value history in gdb? How can you print variables or expressions without sending

the printed value to the value history?

8. Study how to ignore breakpoints.

9. Explain how you can use new gdb variables not defined in the source file(s).

10. [Conditional break] You have the following loop (with the specified line numbers) in your C program.

123 for (n=0; n<1000000; ++n) {

124 ...

...

234 a = p -> value;

...

344 ...

345 }

You notice that the program encounters a segmentation fault, because p unexpectedly becomes NULL at

line 234 for some (not all) value(s) of n. Propose a break instruction for gdb so that you can easily detect

whenever this happens for the first time. Also explain how you can get the value of n at this point.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

11. You have the following loop (with the specified line numbers) in your C program.

123 for (n=0; n<1000000; ++n) {

124 ...

...

234 a = f(n);

...

344 ...

345 }

Suppose that the loop works without errors for 0 6 n < n0, and some problem happens in the return

values of the function calls f(n) for n0 6 n < 1000000. You want to locate the exact value of n0 using

gdb. Assume that you can understand a faulty return value by simply inspecting it. Propose an efficient

strategy of doing this interactively from the gdb prompt.

12. [Watchpoints] A breakpoint is a point where the execution of a program in gdb stops conditionally or

unconditionally. A watchpoint is a point where the execution stops whenever the value of a variable or ex-

pression changes. This can often be a powerful debugging tool. For example, if a buffer overflow corrupts

some variable(s) unintentionally, the source of the problem can be effectively identified by this feature.

Investigate how you can set a watchpoint, list all watchpoints set, enable/disable/delete watchpoints.

13. Investigate how you can examine the contents of your program’s memory using the x command.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

14. You set a breakpoint at the first printf line in the following program.

int main ()

{

int i, A[5] = {15,16,17};

printf("Hello\n");

for (i=0; i<5; ++i)

printf("A[%d] = %d\n", i, A[i]);

}

Examine what x/5wx A, x/5wx A+1, x/5wx A-1, and x/1wx &i print at the breakpoint. Explain.

Notice that i is uninitialized at this point.

15. You write a C program in which Line 100 (this line is in your main() function) makes the following

assignment.

z = f(x) + g(y);

Here, f() and g() are two functions in your program, and are called for the first time in this line. Both

these functions are called multiple times later, but you suspect that there is some problem in the first

call g(y). You need to scrutinize how g() works line by line only in the first call (but not in the later

calls). Also, you do not want to scrutinize the line-by-line working of f() in any of its calls. Explain how

you can use gdb interactively to solve this debugging problem. Notice that you do not know beforehand

whether f(x) or g(y) is computed first before the addition and assignment to z.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

16. Repeat the last exercise if the line z = f(x) + g(y); makes the last call of g().

17. You write a C program in which Line 64 (this line is in your main() function) makes the following

assignment.

t = g(f(n));

Here, f() and g() are two functions in your program, and both are called multiple times before and after

this line. You suspect that there is some problem in the call of g() in this line, so you need to scrutinize

the line-by-line working of g() only for this call. You do not want to scrutinize the line-by-line working

of any other call of g() or any call of f(). Explain how you can use gdb interactively to solve this

debugging problem. Assume that f(n) returns the correct value.

18. A function myfunc() in your C program has a loop from Line 123 to Line 127, which is supposed to

set a local int variable t to a value greater than or equal to 10 when the loop ends. In Line 128 (also

inside myfunc()), you make a division by t. Therefore if the loop breaks (due to some bug) with t = 0,

then the program encounters a division-by-zero error, and terminates abnormally. You do not want this

to happen. Assume that myfunc() is called only once and from the main() function. If t is non-zero

in Line 128, you allow the program to continue normally. If t is zero, you go back to main() without

proceeding further in the function. Explain how you can use gdb interactively to achieve this.

19. Suppose that you want to count how many times a function f() is called in your C program. Explain

how you can automate this process using gdb.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

