
Systems Programming Laboratory, Spring 2023

Introduction to gcc

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

January 14, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

What you do not know about gcc

• What does the gcc compiler do?

• What are header files? Why should one #include them?

• Why should programs with math functions be compiled with the –lm flag?

• What are the compile-time options for gcc?

• How can C programs communicate with the shell?

• What is the C preprocessor?

• How can one write a program in multiple input files?

• What are libraries?

• How can one write one’s own libraries?

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The Compilation Process and

Runtime Loading

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

January 14, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The four-stage compilation process

Preprocessing This involves the processing of the # directives. Examples:

• The #include’d files are inserted in your code.

• The #define’d macros are literally substituted throughout your code.

Compiling The input to this process is the preprocessed C file, and the output is an

assembly-language code targeted to the architecture of your machine.

Assembling The assembly-language code generated by compiling is converted to a

machine code called the object file. The external functions (like printf and

sqrt) are still undefined.

Linking The object file(s) is/are eventually converted to an executable file in this

process. At this point, the external functions from C runtime library and

other libraries are included in the executable file.

Loading Some functions available in shared (or dynamic) libraries are loaded during

runtime from shared object files.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The compilation process in a nutshell

C
O
M
P
I
L
A
T
I
O
N

Preprocessing

Compiling

Assembling

Linking

cpp

as

ld

Input source (.c, .h)

Headers and macros processed (.i)

Assembly code (.s)

Machine code (.o)

Static libraries (.a)

Executable machine code (a.out)

RunShared libraries (.so)

gcc

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

An example of the four-stage compilation process

The file demo.c

#include <stdio.h>
#include <stdlib.h>

#define TEN 10

#define TWENTY 20

int main ()
{

int a, b, c;

a = TEN;
b = a + TWENTY;

c = a * b;
printf("c = %d\n", c);
exit(0);

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Preprocessing

The C preprocessor is called cpp.

$ cpp demo.c > demo.i

$ cat demo.i

...

typedef unsigned char __u_char;

typedef unsigned short int __u_short;

typedef unsigned int __u_int;

typedef unsigned long int __u_long;

...

7 "demo.c"

int main ()

{

int a, b, c;

a = 10;

b = a + 20;

c = a * b;

printf("c = %d\n", c);

exit(0);

}

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Compiling

This needs invoking gcc with the –S flag. A file with extension .s is generated.

$ gcc -S demo.i

$ cat demo.s

.file "demo.c"

.text

.section .rodata

.LC0:

.string "c = %d\n"

.text

.globl main

.type main, @function

main:

.LFB6:

.cfi_startproc

endbr64

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

subq $16, %rsp

movl $10, -12(%rbp)

movl -12(%rbp), %eax

addl $20, %eax

movl %eax, -8(%rbp)

movl -12(%rbp), %eax

imull -8(%rbp), %eax

movl %eax, -4(%rbp)

movl -4(%rbp), %eax

movl %eax, %esi

leaq .LC0(%rip), %rdi

movl $0, %eax

call printf@PLT

movl $0, %edi

call exit@PLT

.cfi_endproc

...

$

PLT means Procedure Linkage Table.

These functions are for runtime loading.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Assembling

• The assembler is called as.

• The symbols in object files are listed by nm.

$ as demo.s -o demo.o

$ nm demo.o
U exit
U _GLOBAL_OFFSET_TABLE_

0000000000000000 T main

U printf

• printf and exit are undefined in this object file.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Linking

• This is done by ld.

• This requires many libraries and is complicated.

• gcc does it transparently for you.

$ gcc demo.o

$./a.out
c = 300
$ nm a.out
...

• You get a big list of defined symbols.

• printf and exit are still left undefined.

...

U exit@@GLIBC_2.2.5
...

U printf@@GLIBC_2.2.5

...

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Runtime loading

• printf and exit are loaded from shared object(s) during runtime.

$ ldd a.out

linux-vdso.so.1 (0x00007ffe80ff2000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f98b5e19000)

/lib64/ld-linux-x86-64.so.2 (0x00007f98b602d000)

$

• If you want these functions to be in your executable, compile with the –static flag.

• This creates a huge a.out.

• You can see printf and exit defined in the executable.

$ gcc -static demo.o

$ ldd a.out

not a dynamic executable

$ nm a.out | grep printf

...

0000000000410bb0 T printf

...

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Multi-file Applications

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

January 14, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Break your code across multiple files

• Modular programming is a good practice, and is needed in any large coding project.

• Large source files take huge time for recompilation.

• If the code is broken down in pieces, then only the pieces that are changed need

recompilation.

• Large software development is a two-stage process.

• Generate object files from individual modules.

• Merge the object files into a single executable file.

• Sometimes object files are combined in the form of libraries.

• User programs can use the functions archived in libraries during future developments.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Staque: A multi-file stack-queue application

• We build linked-list implementations of the stack and queue data structures.

• We write the following files.

defs.h Defines a node data type.

stack.h Defines the stack data type and the stack function prototypes.

queue.h Defines the queue data type and the queue function prototypes.

stack.c The implementations of the stack functions.

queue.c The implementations of the queue functions.

staquecheck.c A sample application with the main function.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The header file defs.h

• Both stacks and queues use nodes defined as follows.

typedef struct _node {
int data;
struct _node *next;

} node;

typedef node *nodep;

• Write these data-type definitions in defs.h.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The header file stack.h

typedef nodep stack; // Pointer to the beginning of the linked list

stack initstack () ; // Create a new empty stack

int emptystack (stack) ; // Check whether the input stack is empty

int top (stack) ; // Return the top of a stack (if non-empty)

stack push (stack , int) ; // Push an integer to a stack

stack pop (stack) ; // Pop from a (non-empty) stack

void printstack (stack) ; // Print the elements of a stack from top to bottom

stack destroystack (stack) ; // Delete all the nodes from a stack

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The header file queue.h

typedef struct {
nodep front; // Pointer to the beginning of the linked list

nodep back; // Pointer to the end of the linked list

} queue;

queue initqueue () ; // Create a new empty queue

int emptyqueue (queue) ; // Check whether a queue is empty

int front (queue) ; // Return the element at the front of a queue (if non-empty)

queue enqueue (queue , int) ; // Insert an integer at the front of a queue

queue dequeue (queue) ; // Delete an element from the back of a (non-empty) queue

void printqueue (queue) ; // Print the elements of a queue from front to back

queue destroyqueue (queue) ; // Delete all the nodes from a queue

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The file stack.c

#include <stdio.h>
#include <stdlib.h>
#include "defs.h"
#include "stack.h"

stack initstack ()

{

stack S;

S = (stack)malloc(sizeof(node));

S -> data = 0; S -> next = NULL;

return S;

}

· · ·

stack destroystack (stack S)

{

node *p;

while (S) {

p = S; S = S -> next; free(p);

}

return NULL;

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The file queue.c

#include <stdio.h>
#include <stdlib.h>
#include "defs.h"

#include "queue.h"

queue initqueue ()

{

queue Q;

node *p;

p = (node *)malloc(sizeof(node));

p -> data = 0;

p -> next = NULL;

Q.front = Q.back = p;

return Q;

}

· · ·

queue destroyqueue (queue Q)

{

node *p;

while (Q.front) {

p = Q.front;

Q.front = (Q.front) -> next;

free(p);

}

Q.front = Q.back = NULL;

return Q;

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The application staquecheck.c

#include <stdio.h>
#include <stdlib.h>

#include "defs.h"
#include "stack.h"
#include "queue.h"

#define ITER_CNT 10

int main ()

{

stack S;

queue Q;

int i;

S = initstack();

for (i=0; i<ITER_CNT; ++i) { S = push(S, rand() % 100); printstack(S); }

S = destroystack(S);

Q = initqueue();

for (i=0; i<ITER_CNT; ++i) { Q = enqueue(Q, rand() % 100); printqueue(Q); }

Q = destroyqueue(Q);

exit(0);

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Compile in one shot

$ gcc -Wall staquecheck.c stack.c queue.c

$ ls -l

total 48

-rwxr-xr-x 1 abhij abhij 17640 Dec 23 20:40 a.out

-rw-r--r-- 1 abhij abhij 152 Dec 23 19:43 defs.h

-rw-r--r-- 1 abhij abhij 1262 Dec 23 19:45 queue.c

-rw-r--r-- 1 abhij abhij 360 Dec 23 19:43 queue.h

-rw-r--r-- 1 abhij abhij 1098 Dec 23 19:45 stack.c

-rw-r--r-- 1 abhij abhij 315 Dec 23 19:43 stack.h

-rw-r--r-- 1 abhij abhij 983 Dec 23 20:34 staquecheck.c

$./a.out

...

$

• The option -Wall generates most of the relevant warning messages.

• Instead of a.out, you can generate an executable file of any name by the -o option.

$ gcc -Wall -o myapp staquecheck.c stack.c queue.c

$./myapp

• Never forget an executable name after –o. Writing the C source file name after –o will

replace the file.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Generating individual object files

• Compile using the -c option.

• Does not require a main function.

• This does not generate an executable file (even if main is there).

$ gcc -Wall -c stack.c
$ gcc -Wall -c queue.c
$ gcc -Wall -o myapp staquecheck.c stack.o queue.o
$ ls -l

-rw-r--r-- 1 abhij abhij 152 Dec 23 19:43 defs.h
-rwxr-xr-x 1 abhij abhij 17640 Dec 23 21:01 myapp
-rw-r--r-- 1 abhij abhij 1262 Dec 23 19:45 queue.c
-rw-r--r-- 1 abhij abhij 360 Dec 23 19:43 queue.h

-rw-r--r-- 1 abhij abhij 3424 Dec 23 21:01 queue.o
-rw-r--r-- 1 abhij abhij 1098 Dec 23 19:45 stack.c
-rw-r--r-- 1 abhij abhij 315 Dec 23 19:43 stack.h
-rw-r--r-- 1 abhij abhij 3248 Dec 23 21:01 stack.o

-rw-r--r-- 1 abhij abhij 983 Dec 23 20:34 staquecheck.c
$./myapp
...

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Difference between #include <. . .> and #include ". . ."

• There are default (system-dependent) directories for C header files.

• /usr/include

• /usr/local/include

• Header files residing in non-default directories should be included by the

#include "..." directive.

• You can add to the list of default include directories by the -I option.

$ gcc -Wall -c -I. stack.c
$ gcc -Wall -c -I. queue.c
$ gcc -Wall -o myapp -I. staquecheck.c stack.o queue.o

• These compilations add the current directory to the list of include directories.

• You can now use #include <defs.h>, #include <stack.h>, and

#include <queue.h> in the source codes.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The environment variable C INCLUDE PATH

• You can avoid the -I flag if you set C_INCLUDE_PATH.

• Multiple directories can be added as a colon-separated list DIR1:DIR2:DIR3:. . .

• . (the current directory) can be one of these directories.

• In bourne shell, this can be done as:

$ export C_INCLUDE_PATH=".:/home/foobar/include:/opt/users/foobar/include"
$

• C shell users should do this:

% setenv C_INCLUDE_PATH ".:/home/foobar/include:/opt/users/foobar/include"
%

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

How to Create Libraries

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

January 14, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Introduction

• A library is a pre-compiled archive of object files.

• These can be linked to user codes during compilation or during runtime.

• Example: The math library consists of the following.

1. Data types: float, double, . . .

2. Functions: pow, sqrt, atan, cosh, abs, . . .

3. Constants: M PI, M E, M LOG2E, M SQRT2, . . .

4. A precompiled archive of implementations of the math functions.

• You only need the first three items during compilation.

• This is achieved by #include <math.h>.

• The precompiled math library (Item 4) is needed for linking to your final executable.

• You specify the option -lm for this linking.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Types of libraries

Static libraries

• Prefix: lib

• Extension: .a

• The static math library has the name libm.a

• Functions from static libraries are inserted in the executable during linking

Shared (or dynamic) libraries

• Prefix: lib

• Extension: .so (may be followed by . and a version number)

• The shared math library has the name libm.so

• Functions from shared libraries are not inserted in the executable during linking

• The functions are read from the .so objects during runtime

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Building the static staque library

• We have the files defs.h, stack.h, queue.h, stack.c, and queue.c as before.

• We want to build the static library libstaque.a. This will contain all the stack and

queue functions as listed earlier.

• The library is not meant to contain any main function.

• Application programs like staquecheck.c will contain the main functions as needed.

• Compile individual source files with the –c option to generate the object files.

• Combine the object files into an archive libstaque.a using the command ar.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Generate libstaque.a

$ gcc -Wall -c stack.c
$ gcc -Wall -c queue.c
$ ar rcs libstaque.a stack.o queue.o

$ ls -l
-rw-r--r-- 1 abhij abhij 152 Dec 23 19:43 defs.h
-rw-r--r-- 1 abhij abhij 7046 Dec 24 18:25 libstaque.a

-rw-r--r-- 1 abhij abhij 1262 Dec 23 19:45 queue.c
-rw-r--r-- 1 abhij abhij 360 Dec 23 19:43 queue.h
-rw-r--r-- 1 abhij abhij 3424 Dec 24 18:23 queue.o
-rw-r--r-- 1 abhij abhij 1098 Dec 23 19:45 stack.c

-rw-r--r-- 1 abhij abhij 315 Dec 23 19:43 stack.h
-rw-r--r-- 1 abhij abhij 3248 Dec 24 18:23 stack.o
-rw-r--r-- 1 abhij abhij 144 Dec 23 19:43 staque.h
$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

What is there in libstaque.a

$ nm libstaque.a

stack.o:

00000000000001c9 T destroystack

0000000000000036 T emptystack

U free

U fwrite

U _GLOBAL_OFFSET_TABLE_

0000000000000000 T initstack

U malloc

00000000000000f4 T pop

U printf

000000000000016a T printstack

00000000000000a8 T push

U putchar

U stderr

0000000000000055 T top

queue.o:

0000000000000144 T dequeue

0000000000000242 T destroyqueue

000000000000004a T emptyqueue

00000000000000dd T enqueue

U free

0000000000000076 T front

U fwrite

U _GLOBAL_OFFSET_TABLE_

0000000000000000 T initqueue

U malloc

U printf

00000000000001d6 T printqueue

U putchar

U stderr

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

How to use the library

• To compile the application program staquecheck.c as given earlier.

• Include the header files defs.h, stack.h, and queue.h.

• A straightforward compilation fails.

$ gcc -Wall staquecheck.c

/usr/bin/ld: /tmp/ccIr2q5J.o: in function ‘main’:

staquecheck.c:(.text+0x12): undefined reference to ‘initstack’

/usr/bin/ld: staquecheck.c:(.text+0x57): undefined reference to ‘push’

/usr/bin/ld: staquecheck.c:(.text+0x67): undefined reference to ‘printstack’

/usr/bin/ld: staquecheck.c:(.text+0x7d): undefined reference to ‘destroystack’

/usr/bin/ld: staquecheck.c:(.text+0x8b): undefined reference to ‘initqueue’

/usr/bin/ld: staquecheck.c:(.text+0xdb): undefined reference to ‘enqueue’

/usr/bin/ld: staquecheck.c:(.text+0xf6): undefined reference to ‘printqueue’

/usr/bin/ld: staquecheck.c:(.text+0x113): undefined reference to ‘destroyqueue’

collect2: error: ld returned 1 exit status

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

How to link the library

• Like –lm, you should compile with –lstaque.

$ gcc -Wall staquecheck.c -lstaque

/usr/bin/ld: cannot find -lstaque

collect2: error: ld returned 1 exit status

$

• The linker ld does not look in the current directory for searching libraries.

• The –L option advises the linker to add directories to the library path.

$ gcc -Wall -L. staquecheck.c -lstaque

$ ls -l

-rwxr-xr-x 1 abhij abhij 17536 Dec 24 18:52 a.out

-rw-r--r-- 1 abhij abhij 152 Dec 23 19:43 defs.h

-rw-r--r-- 1 abhij abhij 7046 Dec 24 18:25 libstaque.a

-rw-r--r-- 1 abhij abhij 1262 Dec 23 19:45 queue.c

-rw-r--r-- 1 abhij abhij 360 Dec 23 19:43 queue.h

-rw-r--r-- 1 abhij abhij 3424 Dec 24 18:23 queue.o

-rw-r--r-- 1 abhij abhij 1098 Dec 23 19:45 stack.c

-rw-r--r-- 1 abhij abhij 315 Dec 23 19:43 stack.h

-rw-r--r-- 1 abhij abhij 3248 Dec 24 18:23 stack.o

-rw-r--r-- 1 abhij abhij 473 Dec 24 18:52 staquecheck.c

-rw-r--r-- 1 abhij abhij 144 Dec 23 19:43 staque.h

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

How to avoid –L?

• You do not need –L for –lm, but why now?

• This is because the math library resides in a standard library directory.

• /usr/lib

• /usr/local/lib

• /usr/lib/x86 64-linux-gnu/

• If you copy libstaque.a to a standard directory, you do not need –L.

• Also, your application programs can be anywhere in the file system.

• This needs superuser privilege.

$ rm a.out

$ sudo cp libstaque.a /usr/local/lib/

[sudo] password for abhij:

$ gcc -Wall staquecheck.c -lstaque

$ ls -l

-rwxr-xr-x 1 abhij abhij 17536 Dec 24 19:07 a.out

...

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

What about the header files?

• The header files may reside in a default directory.

• Any application can #include < · · ·> them without –I.

• The application programs do not need to know where the header files are.

• There are standard header directories.

• /usr/include

• /usr/local/include

• A user with superuser privileges can copy the header files to one of these directories.

• Using subdirectories is a good option.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Installing the libstaque headers

• Write an outer wrapper staque.h.

#include <staque/defs.h>
#include <staque/stack.h>
#include <staque/queue.h>

• Run the following commands.

$ sudo mkdir /usr/include/staque

$ sudo cp defs.h stack.h queue.h /usr/include/staque
$ sudo cp staque.h /usr/include
$

• Subsequently, any application program may only #include <staque.h>.

• The three required header files are in turn included by this.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The keyword extern

• The functions declared in the header files are not implemented by your code.

• These functions are implemented in external library/libraries.

• The key word extern directs the compiler to wait for these implementations.

The header file queue.h

extern queue initqueue () ;

extern int emptyqueue (queue) ;

extern int front (queue) ;

extern queue enqueue (queue , int) ;

extern queue dequeue (queue) ;

extern void printqueue (queue) ;

extern queue destroyqueue (queue) ;

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Building the shared staque library

• We again need only the files defs.h, stack.h, queue.h, stack.c, and queue.c.

• We plan to generate libstaque.so.

• Compile individual source files with the –c option to generate the object files.

• Use the option –fPIC to generate position-independent codes.

• Combine the objects into the shared library using gcc –shared.

$ gcc -Wall -fPIC -c stack.c
$ gcc -Wall -fPIC -c queue.c
$ gcc -shared -o libstaque.so stack.o queue.o

$ ls -l
...
-rwxr-xr-x 1 abhij abhij 16928 Dec 24 20:51 libstaque.so
...

$

• You can nm libstaque.so to find all the defined and undefined symbols.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

How to link libstaque.so?

• The linker is not supposed to link the stack and queue functions to applications.

• These functions will be read from libstaque.so during runtime.

• Again you need the –L option to add the path of the library.

• If you (in the superuser mode) copy libstaque.so to a system directory, then you do

not need –L.

$ sudo cp libstaque.so /usr/local/lib/
$ gcc -Wall staquecheck.c -lstaque
$ ls -l

-rwxr-xr-x 1 abhij abhij 17064 Dec 24 21:05 a.out
...
$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Libstaque functions are undefined in your a.out

$ nm a.out | grep " U "

U destroyqueue

U destroystack

U enqueue

U exit@@GLIBC_2.2.5

U initqueue

U initstack

U __libc_start_main@@GLIBC_2.2.5

U printqueue

U printstack

U push

U putchar@@GLIBC_2.2.5

U rand@@GLIBC_2.2.5

$

Good, but you still (perhaps) cannot run your a.out.

$./a.out

./a.out: error while loading shared libraries: libstaque.so: cannot open shared object file: No such file or

directory

$ ldd a.out

linux-vdso.so.1 (0x00007ffd0b250000)

libstaque.so => not found

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fb539500000)

/lib64/ld-linux-x86-64.so.2 (0x00007fb539714000)

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Set the runtime library path

• You need to set the environment variable LD_LIBRARY_PATH.

• If you use the bourne shell, do this:

$ export LD_LIBRARY_PATH=/usr/local/lib

• If you use the C shell, do this:

% setenv LD_LIBRARY_PATH /usr/local/lib

• Now, check whether libstaque.so is found.

$ ldd a.out

linux-vdso.so.1 (0x00007ffe643b1000)

libstaque.so => /usr/local/lib/libstaque.so (0x00007f780a59e000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f780a391000)

/lib64/ld-linux-x86-64.so.2 (0x00007f780a5aa000)

$

• Go ahead, and run your a.out. No complaints from anybody.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Some Compile-time Options

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

January 14, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Some useful gcc options

–W –Wall includes the following (among others). Some of these have many

subcategories.

–Wcomment Warn about nested comments.

–Wformat Warn about type mismatches in scanf and printf.

–Wunused Warn about unused variables.

–Wimplicit Warn about functions used before declaration.

–Wreturn-type Warn about returning void for functions with non-void return

values.

–Wall does not include the following (among otheres).

–Wconversion Warn about implicit type conversions.

–Wshadow Warn about shadowed variables.

–Werror Convert warnings to errors.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Some useful gcc options (contd.)

–g Add debugging information in the executable and object files.

–pg Compile for profiling.

–O Set the optimization level.

–O0 No optimization (default behavior, useful when debugging).

–O1, –O2, –O3 Various levels of optimization. Optimization is

time-consuming, and can be used only during the last stages

of development.

–Os Optimize (reduce) the size of the code.

–v Verbose mode of compilation.

– –help Print help message for usage.

– –version Print the gcc version.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The C Preprocessor

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

January 14, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The C preprocessor

• The C preprocessor has the name cpp.

• This has two basic jobs.

• Insert the #include’d files into your code.

• Processing the macros.

• Macros can be defined in two ways.

• Using #define in your code.

• By the command-line option –D.

• Checking whether a macro is defined or not is possible.

• Macros can be parameterized.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Macros used as flags

#define MACRONAME Define the macro MACRONAME.

#undef MACRONAME Undefine the macro MACRONAME.

#ifdef MACRONAME If MACRONAME is defined.

#ifndef MACRONAME If MACRONAME is not defined.

#else The beginning of the else block of an #ifdef or an #ifndef.

#endif The end of the conditional code.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Example of macros used as flags

The file macros.c
#include <stdio.h>

#include <stdlib.h>

#define MYFLAG

int main ()

{

#ifdef MYFLAG

printf("MYFLAG is defined\n");

#undef MYFLAG

#else

printf("MYFLAG is not defined\n");

#endif

#ifndef MYFLAG

printf("MYFLAG is undefined here\n");

#else

printf("MYFLAG is still defined here\n");

#endif

exit(0);

}

$ gcc -Wall macros.c

$./a.out

MYFLAG is defined

MYFLAG is undefined here

$

Remove #define MYFLAG from macros.c.

$ gcc -Wall macros.c

$./a.out

MYFLAG is not defined

MYFLAG is undefined here

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Redefine MYFLAG from command line

$ gcc -Wall -DMYFLAG macros.c

$./a.out

MYFLAG is defined

MYFLAG is undefined here

$

$ cpp -DMYFLAG macros.c

...

int main ()

{

printf("MYFLAG is defined\n");

printf("MYFLAG is undefined here\n");

exit(0);

}

$

• Defining macros using –D offers compilation-time flexibility.

• You compile your assignments with –DDIAGNOSTIC.

• Your TA does not require the diagnostic messages, and compiles without this flag.

• On the flip side, some programs may refuse to compile without macros defined.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Use of macros as flags

• Conditional execution with diagnostic messages (helpful during development).

• Protecting parts of code. The following header file can be #include’s multiple times.

The flag prevents the stack data type and the function prototypes from getting

declared multiple times.

The header file stack.h
#ifndef __LIBSTAQUE_STACK_H

#define __LIBSTAQUE_STACK_H

typedef nodep stack;

extern stack initstack () ;

extern int emptystack (stack) ;

extern int top (stack) ;

extern stack push (stack , int) ;

extern stack pop (stack) ;

extern void printstack (stack) ;

extern stack destroystack (stack) ;

#endif

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Use of macros as values for substitution

The file macroval.c
#include <stdio.h>

#include <stdlib.h>

#define EXPR1 100

#define EXPR2 10 * 10

int main ()

{

if (EXPR1 == EXPR2) printf("EXPR1 is equal to EXPR2\n");

else printf("EXPR1 is not equal to EXPR2\n");

if (EXPR1 == EXPR3) printf("EXPR1 is equal to EXPR3\n");

else printf("EXPR1 is not equal to EXPR3\n");

if (EXPR1 == EXPR4 * EXPR4) printf("EXPR1 is equal to EXPR4 * EXPR4\n");

else printf("EXPR1 is not equal to EXPR4 * EXPR4\n");

exit(0);

}

• This program cannot compile as such, because EXPR3 and EXPR4 are not defined.

• We define these macros by the –D option.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Examples of macros as values for substitution

$ gcc -Wall -DEXPR3="50 + 50" -DEXPR4="5 + 5" macroval.c

$./a.out

EXPR1 is equal to EXPR2

EXPR1 is equal to EXPR3

EXPR1 is not equal to EXPR4 * EXPR4

$

• Macros are literally substituted by the C preprocessor.

• Macros are not evaluated before the substitution.

• EXPR4 * EXPR4 is substituted as 5 + 5 * 5 + 5 which evaluates to 35 (not 100).

$ cpp -DEXPR3="50 + 50" -DEXPR4="5 + 5" macroval.c

...

int main ()

{

if (100 == 10 * 10) printf("EXPR1 is equal to EXPR2\n");

else printf("EXPR1 is not equal to EXPR2\n");

if (100 == 50 + 50) printf("EXPR1 is equal to EXPR3\n");

else printf("EXPR1 is not equal to EXPR3\n");

if (100 == 5 + 5 * 5 + 5) printf("EXPR1 is equal to EXPR4 * EXPR4\n");

else printf("EXPR1 is not equal to EXPR4 * EXPR4\n");

exit(0);

}

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Quoting strings with –D

The file macrostr.c
#include <stdio.h>

#include <stdlib.h>

int main ()

{

printf("Welcome %s\n", MYNAME);

exit(0);

}

$ gcc -DMYNAME="Sad Tijihba" macrostr.c

Many error messages

$ cpp -DMYNAME="Sad Tijihba" macrostr.c

...

int main ()

{

printf("Welcome %s\n", Sad Tijihba);

exit(0);

}

$

$ gcc -DMYNAME=’"Sad Tijihba"’ macrostr.c

$./a.out

Welcome Sad Tijihba

$ cpp -DMYNAME=’"Sad Tijihba"’ macrostr.c

...

int main ()

{

printf("Welcome %s\n", "Sad Tijihba");

exit(0);

}

$

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The main() function can have parameters and a return value.

But for whom?

Abhijit Das

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

January 14, 2023

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Talking with the shell

• You run your compiled executable (like a.out) from the shell.

• You may add one or more command-line arguments.

• These arguments should somehow go to your C program.

• When the program finishes execution, it should return something to the shell.

• The return value conventionally indicates successful/unsuccessful termination.

The fully decorated main() function

int main (int argc, char *argv[])

{
· · ·

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

The shell talks to your program

• argc is the count of arguments including the program name (like ./a.out).

• argv is a null-terminated array of strings storing the command-line arguments.

• Each argument is a string.

• Use the library functions atoi, atol, atof, . . . (defined in stdlib.h) to convert arguments

to int, long int, double,

• For example, if you run ./a.out 2022 -name "Sad Tijihba" 6.32, then we have

• argc = 5,

• argv[0] = "./a.out",

• argv[1] = "2022",

• argv[2] = "-name",

• argv[3] = "Sad Tijihba",

• argv[4] = "6.32", and

• argv[5] = NULL.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Your program talks to the shell

• The return type of main is int.

• You use return or exit() to pass a value to the shell.

• Only an integer value can be returned.

• Conventionally, the return value is an indicator whether the program completed

successfully or not.

• 0 means successful termination.

• Any non-zero return value means unsuccessful termination.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

An example chat

The file circle.c
#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

int c, d, r, x, y, t1, t2, t3;

char s1, s2, s3;

if (argc != 6) {

fprintf(stderr, "*** Incorrect number of arguments\n");

exit(1);

}

c = atoi(argv[1]); d = atoi(argv[2]); r = atoi(argv[3]);

x = atoi(argv[4]); y = atoi(argv[5]);

t1 = -2*c; s1 = (t1 >= 0) ? ’+’ : ’-’; if (t1 < 0) t1 = -t1;

t2 = -2*d; s2 = (t2 >= 0) ? ’+’ : ’-’; if (t2 < 0) t2 = -t2;

t3 = c*c + d*d - r*r; s3 = (t3 >= 0) ? ’+’ : ’-’; if (t3 < 0) t3 = -t3;

printf("The equation of the circle: x^2 + y^2 %c %dx %c %dy %c %d = 0\n", s1, t1, s2, t2, s3, t3);

if ((x - c) * (x - c) + (y - d) * (y - d) <= r * r) printf("(%d,%d) is inside the circle\n", x, y);

else printf("(%d,%d) is outside the circle\n", x, y);

exit(0);

}

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

A chat transcript

$ gcc -Wall -o circle circle.c

$./circle 1 2 3 4 5

The equation of the circle: x^2 + y^2 - 2x - 4y - 4 = 0

(4,5) is outside the circle

$ echo $?

0

$./circle 2 4 3 1 5

The equation of the circle: x^2 + y^2 - 4x - 8y + 11 = 0

(1,5) is inside the circle

$ echo $?

0

$./circle 1 2 3 4

*** Incorrect number of arguments

$ echo $?

1

$ echo $?

0

$

Note: You will not understand now what the shell does with the values returned by

exit(). Wait until you gain familiarity with the shell.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

1. Suppose that a C file myfile.c uses a function myfunc() that is defined in a static library libfunc.a.

What new files will be created, if any, if the following command is executed? Assume that the library

path is set correctly.

gcc -lfunc myfile.c -o outfile

2. An application program mathapp.c needs two libraries libalgebra.so and libgeometry.so. Each

of these libraries uses a library libarithmetic.so. Moreover, libalgebra.so additionally uses

libbasicmath.so. Finally, libarithmetic.so and libbasicmath.so use the standard math li-

brary libm.so. Assume that the runtime library path is appropriately set so that all these libraries can be

located by the compiler and the runtime linker. Show how you can compile mathapp.c.

3. Two C files file1.c and file2.c are to be compiled to form an executable file outfile. Both the

files use a static library libgraph.a stored in the directory /home/foobar/graph/lib and a static

library libstring.a stored in the directory /home/foobar/strings/lib. To access libgraph.a

and libstring.a properly, the C files also need to include some header files stored in the directories

/home/foobar/graph/include and /home/foobar/strings/include. All the header files are to

be accessed from the C files using #include <...> format. Write a single gcc command to do this.

4. Repeat the last exercise assuming that the shared libraries libgraph.so and libstring.so are avail-

able in the directory mentioned. Set LD_LIBRARY_PATH, and then use a single gcc command.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

5. The shared library libstaque.so prepared as described in the slides is copied to a non-system directory

/home/foobar/personal/lib. The environment variable LD_LIBRARY_PATH is not set to include this

directory. You have an application program dfsbfs.c in the directory /home/foobar/algolab, that

uses the stack and queue functions of the staque library. Figure out what extra compilation-time option

you should supply to gcc so that ldd a.out shows that libstaque.so is available in the directory

/home/foobar/personal/lib and the runtime linker does not need setting the LD_LIBRARY_PATH.

6. You are currently in the directory /home/userx/foobar. This directory contains three subdirectories

include, foo, and bar. The subdirectory include contains three header files common.h, foo.h and

bar.h. The subdirectory foo contains three source files foo1.c, foo2.c, and foo3.c, whereas the sub-

directory bar contains two source files bar1.c and bar2.c. The foo source files require the header files

common.h and foo.h, whereas the bar source files require the header files common.h and bar.h. The

required header files are included in the source file in the format #include "../include/...". The

five source files are to compiled to a single foobar library. Describe how you can do this in the following

two cases: (i) you want a static library libfoobar.a, (ii) you want a dynamic library libfoobar.so.

These libraries should be built in your current directory /home/userx/foobar.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

7. A number-theory library and application programs using that library need an array of the primes < 20.

So you plan to use an int array storing these numbers in a header file for the library. However, header

files are not the right place for declaring global variables and arrays. Figure out what problem(s) you face

if you have the following line in the header file. What is the reason behind the problem(s)?

int SMALLPRIMES = { 2, 3, 5, 7, 11, 13, 17, 19 };

How can you overcome the problem(s)? You need to have this array in the header file both during the

compilation of the library and during the compilation of the application programs that use the library.

8. Consider the following program fragment.

unsigned short s;

int i, j;
scanf("%d%d", &i, &j);
s = i / j;
printf("%hu\n", s);

There is an obvious problem with this program. Find it, and show the gcc compilation options such that

(i) gcc will only warn about the problem during compilation,

(ii) gcc will give an error and not compile the program.

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

Practice exercises

9. Suppose that your C program has the following diagnostic printf statements.

printf("++: ...");

printf("+: ...");
printf("++: ...");

printf("+++: ...");

The printf starting with a single + is always to be printed. The printf’s starting with only two + are printed

if the user wants verbose output. The printf’s starting with two and three + are printed if the user wants

very verbose output. The user decides during compilation time whether (s)he uses the normal or the

verbose or the very verbose mode. Modify the above code (without deleting any printf and without using

any extra variables) so that the user can select the printing mode using appropriate compilation options.

Show both the modified code and the compilation options.

10. Consider the following C program with undefined symbols N and A.

int main ()

{
int cnt = N, i, arr[N] = A;
for (i=0; i<cnt; ++i) printf("%d\n", arr[i]);

}

How can you define N and A as macros during compilation so that gcc successfully compiles the file?

Systems Programming Laboratory, Spring 2023 Abhijit Das and Bivas Mitra

