
CS29206 Systems Programming Laboratory, Spring 2022–2023

Class Test 1

15–March–2023 07:00pm–08:00pm Maximum marks: 60

Roll no: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

1. Suppose that you compile the program badstart.c using gcc. What warning message you would get? How do you

repair the code to avoid the warning message? Write your answer in the box given below. (3 + 3)

$ cat badstart.c

int main ()

{

printf("Hello world!\n");

return 0;

}

$ gcc -Wall badstart.c

The compiler complains about the implicit definition of the function printf.

The problem can be repaired by inserting

#include <stdio.h>

at the beginning of the code.

2. Consider the following C program argwork.c. The stdlib function atoi() converts a numeric string to an int.

#include <stdio.h>

#include <stdlib.h>

#define NUM(a,b) ((a) > (b) ? a : b)

int main(int argc, char* argv[])

{

int x = atoi(argv[1]), y = atoi(argv[argc-1]);

#ifdef PRINT1

printf("%d\n", NUM(x,y));

#endif

#ifdef PRINT2

printf("%d\n", x + y - NUM(x,y));

#endif

}

(a) What would happen if you run this program without any command-line argument? (2)

The program will encounter a segmentation fault (argv[] is a NULL-terminated array, and argv[1] is accessed).

(b) How should you compile the code so that:

(i) the program prints the larger of the first and the last arguments, (2)

gcc -Wall -DPRINT1 argwork.c

(ii) the program prints both the first and the last arguments, (2)

gcc -Wall -DPRINT1 -DPRINT2 argwork.c

(iii) the program prints nothing. (2)

gcc -Wall argwork.c

— Page 1 of 4 —

3. You have a project with root directory foobar (see the adjacent figure) for preparing a shared

(that is, dynamic) library libfoobar.so. The source codes are in two subdirectories:

foo contains the foomatic functions, and bar contains the bargodic functions. All the

required header files reside in the subdirectory include. Both the foomatic and the bargodic

functions require the header file common.h. The foomatic functions additionally require the

header file foo.h, and the bargodic functions the header file bar.h. A makefile in the foo

directory is meant for generating the object files from the foomatic source files, and a makefile

in the bar directory is meant for generating the object files from the bargodic source files.

No libraries are to be prepared in the foo and the bar directories. A top-level makefile in the

foobar directory is meant for recursively invoking the makefiles of the foo and the bar

subdirectories and finally combining all the object files into the dynamic library file (in the

foobar directory). The source files use the #include <...> format. Write the three

makefiles in the boxes below. There is no need to write install and clean targets.

bar1.c
bar2.c
Makefile

bar/

include/
common.h
foo.h
bar.h

foo1.c
foo2.c
foo3.c
Makefile

foo/

Makefile

foobar/

(4 × 3)

Makefile in foobar/

FOOOBJS = foo/foo1.o foo/foo2.o foo/foo3.o

BAROBJS = bar/bar1.o bar/bar2.o

all:

cd foo; make

cd bar; make

gcc -shared -o libfoobar.so $(FOOOBJS) $(BAROBJS)

Makefile in foobar/foo/

CFLAGS = -Wall -fPIC -I../include

OBJS = foo1.o foo2.o foo3.o

all: $(OBJS)

$(OBJS): ../include/common.h ../include/foo.h

Makefile in foobar/bar/

CFLAGS = -Wall -fPIC -I../include

OBJS = bar1.o bar2.o

all: $(OBJS)

$(OBJS): ../include/common.h ../include/bar.h

— Page 2 of 4 —

4. Suppose that a C source file contains only the following functions.

void f (int n) { printf("%d\n", n); }

void g (int n) { while (n > 0) { --n; f(n); } }

int main () { for (int n=1; n<=8; ++n) { f(n); g(n); } }

Running the code with gprof gives the following output (contiguous) in the call graph. Fill in the blanks to complete

the gprof output for the given fragment. Show your calculations in the box given below. (5 + 5)

0.00 0.00 8 / 8 main [8]

[2] 0.0 0.00 0.00 8 g [2]

0.00 0.00 36 / 44 f [1]

The transcript corresponds to the call records of the function g().

The main() function calls f() and g() eight times each. No other function calls g(), so the total number of calls

of g() is 8 (second line in the transcript), and all these are from main() (first line).

For a given n, g(n) calls f (n− 1), f (n− 2), . . . , f (0) (a total of n calls). Since g(n) is called for n = 1,2,3, . . . ,8,

the total number of times f() is called by g() is 1+ 2+ 3+ · · ·+ 8 = 36. So the total number of calls of f() is

8+36 = 44, out of which 36 calls are by g() (the remaining 8 are by main()).

5. A C program creates a linked list 71 → 35 → 47 → 40 → 22 → 46 → 58 → 11 headed by a node pointer L. Assume

that there is no dummy node at the beginning of the list, that is, only the eight nodes in the list are allocated memory

in the program. There is a function listsearch(L,x) that makes a linear search for x in the linked list headed by

L, and returns a pointer to a node storing x if such a node exists, or NULL otherwise. After creating the above list, the

program executes the line

L = listsearch(L,40);

and then exits. Assume that there are no global variables, and L is the only pointer declared and used in main(). Find

the types of memory leaks as detected by valgrind on this program in each of the following cases. No explanations are

needed. Only fill out the following table.

Case 1: L heads a singly linked list with the next pointer of the last node set to NULL. Assume that we have

sizeof(node) = 16 in this case. (6)

Case 2: L heads a doubly linked list with the next pointer of the last node and the prev pointer of the first node set

to NULL. Assume that we have sizeof(node) = 24 in this case. (6)

Loss Type Number of blocks Number of bytes Which blocks?

Case 1: L is a singly linked list

Still in use 5 80 40,22,46,58,11

Definitely lost 1 16 71

Indirectly lost 2 32 35,47

Case 2: L is a doubly linked list

Still in use 8 192 71,35,47,40,22,46,58,11

Definitely lost 0 0 None

Indirectly lost 0 0 None

— Page 3 of 4 —

6. You compile the adjacent program (called myprog.c) using gcc with

the -g option, and run the resulting executable under gdb. The line

numbers in the program are as shown. You set a breakpoint at Line 19.

You then make two runs of the program. In the first run, enter 4 as x,

and in the second run, enter 5 as x. If a run hits the breakpoint, you

enter the gdb command bt. After this, you allow the program to finish.

Show the transcripts of your gdb sessions for the two runs in the boxes

provided below. Also explain the outputs produced by gdb.

Assume that in both the cases, main() gets loaded at the memory

location 0x20010, f() gets loaded at 0x123A4 and g() gets loaded

at 0x234B5. The transcripts you write need not match the real ones

available from actual experiments, but you should mention the essential

points, and furnish proper explanations.

1: #include <stdio.h>

2: void f (int);

3: void g (int);

4: int main ()

5: {

6: int x;

7: printf("Enter x: ");

8: scanf("%d",&x);

9: f(x);

10: }

11: void f(int x)

12: {

13: if (x>0) g(x-1);

14: else return;

15: }

16: void g(int y)

17: {

18: if (y>0) f(y-1);

19: else return;

20: }

(6 + 6)

gdb> run

Enter x: 4

[Inferior 1 (process 12345) exited normally]

(gdb)

Explanation:

Here, the sequence of calls goes as follows.

main()→ f (4)→ g(3)→ f (2)→ g(1)→ f (0)

The breakpoint is reached if and only if g() is called with the

parameter y = 0. The situation never arises here.

gdb> run

Enter x: 5

Breakpoint 1, g (y=0) at myprog.c:19

19 else return;

(gdb) bt

#0 g (y=0) at myprog.c:19

#1 0x123a4 in f (x=1) at myprog.c:13

#2 0x234b5 in g (y=2) at myprog.c:18

#3 0x123a4 in f (x=3) at myprog.c:13

#4 0x234b5 in g (y=4) at myprog.c:18

#5 0x123a4 in f (x=5) at myprog.c:13

#6 0x20010 in main () at myprog.c:9

(gdb) c

Continuing.

[Inferior 1 (process 12358) exited normally]

(gdb)

Explanation:

Here, the sequence of calls goes as follows.

main()→ f (5)→ g(4)→ f (3)→ g(2)→ f (1)→ g(0)

In this case, g(0) is called, so the breakpoint is reached, and bt

(backtrace) reports the call stack as given above.

— Page 4 of 4 —

