
Conditional statements

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Summary of conditional statements

• if condition; then c1; c2; ... cm; fi

• if condition; then c1; c2; ... cm; else d1; d2; ... dn; fi

• Each semi-colon (;) can be substituted by a new line.

• if condition
then

c1
c2
...
cm

else
d1
d2
...
dn

fi

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Summary of conditional statements (continued)

• if condition1; then block_1; elif condition2; then block_2;

... else block_r; fi

• case value in val1) block1 ;; val2) block2 ;; ... valn)

blockn ;; *) dftblock ;; esac

• Note the use of semi-colons.

• Every condition must be followed by a semi-colon.

• No need to have a semi-colon after then, else, or elif.

• Use a semi-colon before then, else, or elif if it appears in the same line as the

preceding block.

• A double-semi-colon is needed before every case option (starting from the second).

• Multiple values in case can be separated by |.

• For checking the conditions, bash silently looks at the special variable $?, and

proceeds accordingly.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Example of conditional statements

checkfile.sh
#!/bin/bash

if [$# -eq 0]; then

echo "Run with one command-line argument"

exit 1

fi

fname=$1

if [! -e "$fname"]; then

echo "\"$fname\" does not exist"

exit 2

else

if [-f "$fname"]; then echo "\"$fname\" is a regular file"

elif [-d "$fname"]; then echo "\"$fname\" is a directory"

else echo "\"$fname\" is neither a regular file nor a directory"

fi

echo -n "Permissions:"

if [-r "$fname"]; then echo -n " read"; fi

if [-w "$fname"]; then echo -n " write"; fi

if [-x "$fname"]; then echo -n " execute"; fi

echo ""

fi

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Run checkfile.sh

$./checkfile.sh

Run with one command-line argument

$./checkfile.sh checkfile.sh

"checkfile.sh" is a regular file

Permissions: read write execute

$./checkfile.sh /usr/

"/usr/" is a directory

Permissions: read execute

$./checkfile.sh ~/spl/

"/home/foobar/spl/" is a directory

Permissions: read write execute

$./checkfile.sh /dev/null

"/dev/null" is neither a regular file nor a directory

Permissions: read write

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Example of case

#!/bin/bash

if [$# -eq 0]; then

echo "Usage: $0 FILENAME WORD1 [WORD2 [WORD3]]"

exit 1

fi

fname=$1

case $# in

1) echo "You should specify one, two, or three word(s)" ;;

2) c=‘grep -c -e $2 $fname‘ ;;

3) c=‘grep -c -e $2 -e $3 $fname‘ ;;

4) c=‘grep -c -e $2 -e $3 -e $4 $fname‘ ;;

*) echo "Too many words. Giving up..." ;;

esac

if [$c]; then echo "$c lines matched"; fi

$./options.sh

Usage: ./options.sh FILENAME WORD1 [WORD2 [WORD3]]

$./options.sh textfile.txt

You should specify one, two, or three word(s)

$./options.sh textfile.txt problem

2 lines matched

$./options.sh textfile.txt problem algorithm

7 lines matched

$./options.sh textfile.txt problem algorithm method

12 lines matched

$./options.sh textfile.txt problem algorithm method protocol

Too many words. Giving up...

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

An inefficient Fibonacci-number calculator

fib.sh returns Fibonacci numbers by echoing

#!/bin/bash

function FIB () {

local n=$1

if [$n -le 1]; then echo "$n"; return 0; fi

echo $((‘FIB $((n-1))‘ + ‘FIB $((n-2))‘))

}

echo -n "Enter n: "; read n

echo "F($n) = ‘FIB $n‘"

$./fib.sh

Enter n: 0

F(0) = 0

$./fib.sh

Enter n: 1

F(1) = 1

$./fib.sh

Enter n: 5

F(5) = 5

$./fib.sh

Enter n: 10

F(10) = 55

$./fib.sh

Enter n: 16

F(16) = 987

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Calculating Fibonacci numbers with memoization: A failed attempt

fibmemobad.sh attempts to store the calculated Fibonacci numbers in the array F[]

#!/bin/bash

function FIB () {

local n=$1

if [! ${F[$n]}]; then

F[$n]=$((‘FIB $((n-1))‘ + ‘FIB $((n-2))‘))

fi

echo ${F[$n]}

}

echo -n "Enter n: "; read n

declare -ai F=([0]=0 [1]=1)

echo "${F[@]}"

echo "${!F[@]}"

echo "F($n) = ‘FIB $n‘"

echo "${F[@]}"

echo "${!F[@]}"

Output is correct, but equally slow

$./fibmemobad.sh

Enter n: 16

0 1

0 1

F(16) = 987

0 1

0 1

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

A repaired script that actually does memoization

fibmemo.sh makes all the calculations in the current shell, so F[] is correctly modified

#!/bin/bash

function FIB () {

local n=$1

if [! ${F[$n]}]; then

FIB $((n-1))

FIB $((n-2))

F[$n]=$((F[n-1] + F[n-2]))

fi

}

echo -n "Enter n: "; read n

declare -ai F=([0]=0 [1]=1)

echo "${F[@]}"

echo "${!F[@]}"

FIB $n

echo "F($n) = ${F[$n]}"

echo "${F[@]}"

echo "${!F[@]}"

./fibmemo.sh

Enter n: 16

0 1

0 1

F(16) = 987

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

A script to reverse strings

reversal.sh
#!/bin/bash

function reverse () {

local S=$1

local Slen=${#S}

local T

case $Slen in

0|1) echo "$S" ;;

*) T=${S:0:-1}; T=‘reverse "$T"‘; echo "${S: -1}$T" ;;

esac

}

echo -n "Enter a string: "; read S

echo -n "reverse($S) = "

S=‘reverse "$S"‘

echo "$S"

$./reversal.sh

Enter a string: a bc def ghij klmno pqrstu

reverse(a bc def ghij klmno pqrstu) = utsrqp onmlk jihg fed cb a

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Loops

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

The loop structures at a glance

• for item in list; do block; done

• for arg do block; done

This is equivalent to

for arg in $@; do block; done

• while condition; do block; done

While loops are repeated so long as condition is true.

• until condition; do block; done

Until loops are repeated so long as condition is false.

• Semi-colons may be replaced by new lines.

for item in list
do

block

done

• break, continue, and exit work in the usual way.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

A simple example

• Each of the following loops prints 0,1,2, . . . ,9 in that order, one in each line.

• for n in 0 1 2 3 4 5 6 7 8 9; do echo $n; done

• for n in ‘echo {0..9}‘; do echo $n; done

• n=0; while [$n -lt 10]; do echo $n; n=$((n+1)); done

• n=0; until [$n -eq 10]; do echo $n; n=$((n+1)); done

• Do not quote the list in the for loop, because the quoted list stands for a list of a

single item.

• The range {i..j} can be specified only for constant values of i and j.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

An iterative Fibonacci number calculator

• The shell script fibiter.sh maintains an array F to store

F(0),F(1),F(2), . . . ,F(N) for some N.

• N is initialized to 1, and F is initialized to store 0,1 only.

• In a loop, the script asks for entering n.

• The loop continues until the user enters a non-negative value for n.

• If n 6 N, F(n) is read from the array, and displayed.

• If n > N, then the array F is appended by F(N +1),F(N +2), . . . ,F(n), and N is set

to n. Subsequently, F(n) is displayed.

• After this, the user is asked whether (s)he wants to continue. If not, the script

terminates.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

The script fibiter.sh

#!/bin/bash

function computerest () {

local n=$1

while [$n -le $2]; do F[$n]=$((F[n-1]+F[n-2])); n=$((n+1)); done

}

declare -ia F=([0]=0 [1]=1); N=1

while true

do

echo -n "Enter n: "; read n

if [$n -lt 0]; then echo "Enter a positive integer please"; continue; fi

if [$n -gt $N]; then

echo "Computing F($((N+1))) through F($n)"

computerest $((N+1)) $n

N=$n

fi

echo "F($n) = ${F[$n]}"

until false

do

echo -n "Repeat (y/n)? "; read resp

case $resp in

y|Y) break ;;

n|N) echo "Bye..."; exit 0 ;;

*) echo "Invalid response. Retry...";;

esac

done

done

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Running fibiter.sh

$./fibiter.sh

Enter n: 16

Computing F(2) through F(16)

F(16) = 987

Repeat (y/n)? y

Enter n: 32

Computing F(17) through F(32)

F(32) = 2178309

Repeat (y/n)? Y

Enter n: 64

Computing F(33) through F(64)

F(64) = 10610209857723

Repeat (y/n)? U

Invalid response. Retry...

Repeat (y/n)? Y

Enter n: -40

Enter a positive integer please

Enter n: 40

F(40) = 102334155

Repeat (y/n)? n

Bye...

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

A script to recursively print directory trees

dirtree.sh
#!/bin/bash

function exploredir () {

local currentdir=$1

local currentlev=$2

local lev=0

while [$lev -lt $currentlev]; do echo -n " "; lev=$((lev+1)); done

echo -n $currentdir

if [! -r "$currentdir"] || [! -x "$currentdir"]; then

echo " [Unable to explore further]"

else

echo ""

for entry in ‘ls "$currentdir"‘; do

if [-d "$currentdir/$entry"]; then

exploredir "$currentdir/$entry" $((currentlev+1))

fi

done

fi

}

if [$# -eq 0]; then rootdir=.; else rootdir=$1; fi

if [! -d "$rootdir"]; then echo "$rootdir is not a directory"; exit 1; fi

exploredir "$rootdir" 0

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Running dirtree.sh

$./dirtree.sh /usr/local

/usr/local

/usr/local/bin

/usr/local/etc

/usr/local/games

/usr/local/include

/usr/local/lib

/usr/local/lib/python3.8

/usr/local/lib/python3.8/dist-packages

/usr/local/man

/usr/local/sbin

/usr/local/share

/usr/local/share/ca-certificates

/usr/local/share/emacs

/usr/local/share/emacs/site-lisp

/usr/local/share/fonts

/usr/local/share/man

/usr/local/share/sgml

/usr/local/share/sgml/declaration

/usr/local/share/sgml/dtd

/usr/local/share/sgml/entities

/usr/local/share/sgml/misc

/usr/local/share/sgml/stylesheet

/usr/local/share/texmf

/usr/local/share/xml

/usr/local/share/xml/declaration

/usr/local/share/xml/entities

/usr/local/share/xml/misc

/usr/local/share/xml/schema

/usr/local/src

/usr/local/WinFIG

/usr/local/WinFIG/Documentation [Unable to explore further]

/usr/local/WinFIG/plugins [Unable to explore further]

/usr/local/WinFIG/Scripts [Unable to explore further]

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Writing C-style loops

• Use ((...)).

• for ((i = 0; i < 10; ++i)) do echo $i; done

• i=0

while ((i < 10)); do echo $i; ((++i)); done

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Reading a file line-by-line in an array

file2array.sh

#!/bin/bash

[$# -ge 1] || exit 1;

for fname in $@; do

if [! -f $fname] || [! -r $fname]; then

echo "--- Unable to read $fname"

continue

fi

echo -n "+++ Reading file $fname: "

L=()

while read -r line; do

L+=("$line")

done < $fname

echo "${#L[@]} lines read"

done

$./file2array.sh ~/spl/prog/libstaque/*
+++ Reading file /home/foobar/spl/prog/libstaque/Makefile: 17 lines read

--- Unable to read /home/foobar/spl/prog/libstaque/shared

--- Unable to read /home/foobar/spl/prog/libstaque/static

$./file2array.sh ~/spl/prog/libstaque/static/*.?

+++ Reading file /home/foobar/spl/prog/libstaque/static/defs.h: 11 lines read

+++ Reading file /home/foobar/spl/prog/libstaque/static/queue.c: 82 lines read

+++ Reading file /home/foobar/spl/prog/libstaque/static/queue.h: 17 lines read

+++ Reading file /home/foobar/spl/prog/libstaque/static/stack.c: 79 lines read

+++ Reading file /home/foobar/spl/prog/libstaque/static/stack.h: 14 lines read

+++ Reading file /home/foobar/spl/prog/libstaque/static/staque.h: 8 lines read

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Finding all matches of a regular expression in a file

allmatches.sh
#!/bin/bash

if [$# -lt 2]; then echo "Usage: $0 filename regexp"; exit 1; fi

pattern="(.*)($2)(.*)"

nmatch=0

while read -r line; do

T=(); M=()

while true; do

if [[! $line =~ $pattern]]; then

T+=("$line")

break

fi

T+=("${BASH_REMATCH[3]}")

M+=("${BASH_REMATCH[2]}")

line="${BASH_REMATCH[1]}"

done

l=$((${#T[@]} - 1))

nmatch=$((nmatch + l))

echo -n "${T[$l]}"

for ((i=l-1; i>=0; --i)) do

echo -n "[${M[$i]}]${T[$i]}"

done

echo

done < $1

echo "+++ Total number of matches = $nmatch"

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Running allmatches.sh

$./allmatches.sh textfile.txt ’[A-Z][^A-Z]*[a-z]’

[Abstract]

[This tutorial focuses on algorithms for factoring large composite integers]

and for computing discrete logarithms in large finite fields. [In order to]

make the exposition self-sufficient, [I start with some common and popular]

public-key algorithms for encryption, key exchange, and digital signatures.

[These algorithms highlight the roles played by the apparent difficulty of]

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

[Two exponential-time integer-factoring algorithms are first covered]:

trial division and [Pollard’s rho method]. [This is followed by two]

sub-exponential algorithms based upon [Fermat’s factoring method]. [Dixon’s]

method uses random squares, but illustrates the basic concepts of the

relation-collection and the linear-algebra stages. [Next], [I introduce the]

[Quadratic] [Sieve] [Method] (QS[M) which brings the benefits of using small]

candidates for smoothness testing and of sieving.

[As the third module], [I formally define the discrete-logarithm problem] (DLP)

and its variants. [As a representative of the square-root methods for solving]

the DL[P, the baby-step-giant-step method is explained]. [Next], [I introduce the]

index calculus method (IC[M) as a general paradigm for solving the] DLP.

[Various stages of the basic] IC[M are explained both for prime fields and]

for extension fields of characteristic two.

+++ Total number of matches = 25

Note: Compare this with the output of: grep ’[A-Z][^A-Z]*[a-z]’ textfile.txt

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Sample exercises

1. Write a bash script that takes multiple arguments, and checks which of these arguments is/are Fibonacci

number(s).

2. Write a bash script that takes a positive integer as an argument, and add commas to separate thousands,

lakhs, and crores. For example, for input 123456, the output should be 1,23,456, and for input 123456789,

the output should be 12,34,56,789.

3. Write a bash script (similar to filetree.sh) that recursively lists the entire file tree under a given directory. For

non-directories, the recursive call is not made. If no directory is supplied, take . as the root directory.

4. Write a bash script that takes two directories dir1 and dir2 as arguments, and prints the common names of

files in the two directories.

5. Write a bash script that takes a directory as an argument, and keeps on listing every minute only the names

of the files in that directory, that are modified (after the last print). The first listing is that of all the files in

the directory. Modification includes new files, deleted files, and updated files.

6. Write a bash script that finds all the regular (that is, non-system) users in the system. Assume that regular

users have user IDs > 1000. (Read /etc/passwd.)

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

