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The roadmap

e Unix provides a lot of utilities to process text files (or stdin inputs).
e sort sorts a file line by line.
e uniqgremoves duplicate lines in a (sorted) file.

e wc reports the counts of characters, words, and lines in one or more file(s).

e Here, we will focus on a few of more sophisticated text-processing tools.

e Pattern matching based on regular expressions is often very useful.
e grep is a utility to do a lot of tasks on lines matching patterns.

e sed selects lines in a file based upon line numbers or patterns, and can do a set of
simple tasks on the selected lines.

e awk is a full-fledged programming language targeted to handle text databases.
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Regular Expressions
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Regular expressions

e Same as those introduced in connection with regular languages in your FLAT course.
o Constructs are different.

e Used by less, grep, sed, awk, shells, and many text editors like vi and emacs.

o We use less to demonstrate the matches.

e Running with the —N option lets less show the line numbers.

e In the viewing mode, you can type / (forward slash) followed by a regular expression.
o All matches found are highlighted.

e Searches are made in each line.

e The newline character is not allowed in regular expressions.
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Viewing matches with less
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Matching any character

e Period (.) matches any single character.
e The pattern a.g matches the following.
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Matching a set of characters

e Delimit the set between [ and ].

e [Tt] matches upper- or lower-case T.

e [AEIOU] matches any upper-case vowel.
e [a-z] matches any lower-case letter.

e [a-zA-Z0-9] matches any alphanumeric character.

e The regular expression [A-Z] [a-z ] [a-z ]. gives the following result.
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Negation of a set of characters

e Use ~ after [.

e [~ ] matches any non-space character.

e [“~aeiouAEIOU] matches any character other than the vowels.
e [~a-zA-Z] matches any non-alphabetic character.

[ ]

The output for the search [*AEIOU] [*a-zA-Z ] . [a-drt] is given below.
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Matching zero or more characters

o Use *.

e _x matches any string. . . * matches any non-empty string.

e [a-z]* matches any sequence of lower-case letters.

e [~a-zA-Z]* matches any sequence of non-alphabetic characters.
e Result of searching [A-2] [a—zA-Z ]*[~ ] is given below.

e Longest possible matches are reported, starting as early as possible.
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Match at the beginning or at the end of a string

o If you want the match to start from the beginning, use # as the first symbol.
e If you want the match to finish at the end, use $ as the last symbol.

e The pattern ~ [A-2Z] [a—z] * matches the first word of a line if the line starts with a
capital letter.

e The pattern [a—z]+$ matches the last word of a line if the line ends with a
lower-case letter, and if the last word consists of lower-case letters only.

e The result for searching ~ [A-Za-z, ]*$ is given below.
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oting the special characters

o Use \.,\[,\1,\*, \* \$,\\, and \ /. The last one is used during substitution.

e - need not be quoted.

e [a-z]*\. matches the last word with the period in a sentence if the word consists of
lower-case letters only. If the last word contains characters other than the lower-case
letters, then the match starts after the last such character.

e The pattern [a-z]*—[a—z—]*.*\. matches as follows.
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