Systems Programming Laboratory, Spring 2022

Text processing utilities

Abhijit Das
Arobinda Gupta

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

February 15, 2022

Systems Programming Laboratory, S 2022 Abhijit Das and Arobinda Gupta

The roadmap

e Unix provides a lot of utilities to process text files (or stdin inputs).
e sort sorts a file line by line.
e uniqgremoves duplicate lines in a (sorted) file.

e wc reports the counts of characters, words, and lines in one or more file(s).

e Here, we will focus on a few of more sophisticated text-processing tools.

e Pattern matching based on regular expressions is often very useful.
e grep is a utility to do a lot of tasks on lines matching patterns.

e sed selects lines in a file based upon line numbers or patterns, and can do a set of
simple tasks on the selected lines.

e awk is a full-fledged programming language targeted to handle text databases.

Abhijit Das and Arobinda Gupta

Regular Expressions

mming L atory, Spri 2 Abhijit Das and Arobinda Gupta

Regular expressions

e Same as those introduced in connection with regular languages in your FLAT course.
o Constructs are different.

e Used by less, grep, sed, awk, shells, and many text editors like vi and emacs.

o We use less to demonstrate the matches.

e Running with the —N option lets less show the line numbers.

e In the viewing mode, you can type / (forward slash) followed by a regular expression.
o All matches found are highlighted.

e Searches are made in each line.

e The newline character is not allowed in regular expressions.

Systems Programmin, atory, S Abhijit Das and Arobinda Gupta

Viewing matches with less

1 Abstract

i O e Gl L s s

s end for computing discrete logarithns in large Finite fields. In order to
nake the exposition self-sufficient, I start with sone common and popular
public-key algorithns for encryption, key exchange, and digital signatures
These algorithes highlight the roles played by the apparent difficulty of
solving the factoring and discrete-logarithm problens, for designing
public-key protocols.

Two exponential-tine integer-factoring algorithns are first covered
trial division and Pollard’s rho method. This is followed by two
sub-exponential algorithns besed upon Fermat’s factoring method. Dixon’
nethod uses randon squares, but illustrates the basic concepts of the
relation-collection and the linear-slgebra stages. Next, I introduce the

6 Quadratic Sieve Method (QSM) which brings the benefits of using small
candidates for smoothness testing and of sieving

As the third module, I formally define the discrete-logarithn problem (DLP)
and its variants. As a representative of the square-root metho
the DLP, the baby-step-giant-step
index calculus method (1€

s for solving
S e T
M) os a general paradign for solving the DLP.
Various stages of the basic ICH are explained both for prine Ficlds and

4 for extension fields of characteristic tw

1 Abstract

Abstract

This tutortsl focuses on slgorithns for factoring large conposite integers This tutorial focuses on algof@@Ws for factoring large composite integers

and for computing discrete logarithns in large finite fields. In order to and for computing discrete lo s in large finite fields. In order to
nake the exposition self-sufficient, I start with sone common and popular nake the exposition self-sufficient, I start with some common and popular
public-key algorithns for encryption, key exchange, end digital signatures. public-key alg

7 These algorithns highlight the roles played by the apparent difficulty of
solving the factoring and discrete-logarithn problems, for designing solving the factoring and discrete-logal
public-key protocols. public-key protocols

Two exponential-time integer-factoring algorithms are first covered:
trial division and Pollard’s rho nethod. This is followed by two
sub-expanential algorithns based upen Fermat’s factoring method. Dixon's sub-exponential algoRENs based upon Fermat’s factoring method. Dixon’s
nethod uses random squares, but illustrates the basic concepts of the nethod uses randon squares, but illustrates the basic concepts of the

s relation-collection and the linear-algebra stages. Next, I introduce the relation-collection and the linear-algebra stages. Next, I introduce the
Quadratic Sieve Method (QSM) which brings the benefits of using small Quadratic Sieve Method (QSM) which brings the benefits of using small
condidates for snoothness testing and of sievi candidates for smoothness testing and of siewing

Two exponential-tine integer-factoring algol

As the third module, I formally define the discrete-logarithm problem (DLP)

As the third module, T formally define the discrete-log
and its variants.
the DLP,
index calculus method (ICH) @5 a general paradign for solving the DLP.
Various stages of the basic ICH are explained both for prime fields and
for extension fields of characteristic two.

fl problen (DLP)
Ba 5 coprescaisiive of teieausre vaok mothids Fur-diiving
the baby-step-giant-step method is explained. Next, I introduce the
index calculus method (ICH) @s a general paradign for solving the DL
Various stages of the basic ICH are explained both for prine Fields and

for extension fields of characteristic two.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Matching any character

e Period (.) matches any single character.
e The pattern a.g matches the following.

1 Abstract

s Borithns for factoring | omposite integers

This tutorial for
finite fields. In order to

ot cangye g (1 on et sar e e U
nake the exposition self-suffic art with some common and popular
6 g| ion, key exchififle, and digital signatures.
7 ThesP Bforithns mghhgm the roles played by the apparent difficulty of
8 solving the factoring and discrete-logarithm problems, for designing
public-key protocols.
Two exponenti ime integer-factoring [orithms are First covered:
trial division ond Pollard’s rho method. This is followed by two
sub-exponential Borithns based upon Fermat’s factoring method. Dixon’s

+ method uses random sguares, but illustrates the basic concepts of the
relation-collec i . Next, I introduce the

g
Quadratic Sieve Method (QSM) which brings the benefits of using small
candidates for smoothness testing and of sieving.
iscrete-logarithm problem (DLP)
ative of the square-root methods for solving
the DLP, the baby-step-giant-step method is explained. Next, I introduce the
index calculus method (ICM) as Eeneral paradigm for solving the DLP.
Various stages of the basic ICM are explained both for prime fields and
i for extension fields of characteristic two.

As the third module, I formally define the
represent.

and its variants. As a

Matching a set of characters

e Delimit the set between [and].

e [Tt] matches upper- or lower-case T.

e [AEIOU] matches any upper-case vowel.
e [a-z] matches any lower-case letter.

e [a-zA-Z0-9] matches any alphanumeric character.

e The regular expression [A-Z] [a-z] [a-z]. gives the following result.

ot

E-cer o

nt, -art with some common and popular

i encryption, exchange, and digital signatures
7 e aloorithms i p by the apparent difi Lty of
olving the factoring and discrete-logarithm problems

P for designing
@ public-key prot

are first cov
followed by two

of the
Jtroduce the

a general

1q| lalm-u both for prime fields and
Df characteristic two.

Negation of a set of characters

e Use ~ after [.

e [~] matches any non-space character.

e [“~aeiouAEIOU] matches any character other than the vowels.
e [~a-zA-Z] matches any non-alphabetic character.

[]

The output for the search [*AEIOU] [*a-zA-Z] . [a-drt] is given below.

Abstract

exposition
ey algorithns for encrypt
algorithms highlight the roles play
ving the factoring and discrete-logarithm prob

50|
¢ publi BTN ERo tocols .

Two exponential-tine inte Br-factorjill algorithns are f
2 tri i s rho method. This is followe
EEEcr ing method. Dixon's

step method is f
ral paradigm for solving tl

explained both for prime Fietcs and
of charecteristic two.

Matching zero or more characters

o Use *.

e _x matches any string. . . * matches any non-empty string.

e [a-z]* matches any sequence of lower-case letters.

e [~a-zA-Z]* matches any sequence of non-alphabetic characters.
e Result of searching [A-2] [a—zA-Z]*[~] is given below.

e Longest possible matches are reported, starting as early as possible.

factoring and discr
y protocols.

Match at the beginning or at the end of a string

o If you want the match to start from the beginning, use # as the first symbol.
e If you want the match to finish at the end, use $ as the last symbol.

e The pattern ~ [A-2Z] [a—z] * matches the first word of a line if the line starts with a
capital letter.

e The pattern [a—z]+$ matches the last word of a line if the line ends with a
lower-case letter, and if the last word consists of lower-case letters only.

e The result for searching ~ [A-Za-z,]*$ is given below.

Abhijit Das and Arobinda Gupta

oting the special characters

o Use \.,\[,\1,*, * \$,\\, and \ /. The last one is used during substitution.

e - need not be quoted.

e [a-z]*\. matches the last word with the period in a sentence if the word consists of
lower-case letters only. If the last word contains characters other than the lower-case
letters, then the match starts after the last such character.

e The pattern [a-z]*—[a—z—]*.*\. matches as follows.

i Abstract

algorithms highlight played by the apparent difficulty of
the Factoring and discrel garithn problems, for designing

thms are first covered:
i y two

pts of t
ag: I introduce the
brings the b ts of using small
ing and of sieving.

Next, I intr

od
LP.

ds and

