
Introduction to grep

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

The Unix command grep

• Abbreviation of Global Regular Expression Print.

• Locates lines that contains matches of regular expression(s).

• May or may not highlight the match.

• Options of grep enable you to do a lot of tasks with the matched lines.

• You run grep as:

grep <OPTIONS> <PATTERN> <FILE(S)>

• The pattern is a regular expression.

• A regular expression may contain characters (like *) having special meanings to the

shell, so it is preferable to quote the pattern.

• Single (forward) quotes are recommended.

• Quoting also enables you to search for patterns containing space.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

The input file used in the examples

The file textfile.txt
1 Abstract

2

3 This tutorial focuses on algorithms for factoring large composite integers

4 and for computing discrete logarithms in large finite fields. In order to

5 make the exposition self-sufficient, I start with some common and popular

6 public-key algorithms for encryption, key exchange, and digital signatures.

7 These algorithms highlight the roles played by the apparent difficulty of

8 solving the factoring and discrete-logarithm problems, for designing

9 public-key protocols.

10

11 Two exponential-time integer-factoring algorithms are first covered:

12 trial division and Pollard’s rho method. This is followed by two

13 sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

14 method uses random squares, but illustrates the basic concepts of the

15 relation-collection and the linear-algebra stages. Next, I introduce the

16 Quadratic Sieve Method (QSM) which brings the benefits of using small

17 candidates for smoothness testing and of sieving.

18

19 As the third module, I formally define the discrete-logarithm problem (DLP)

20 and its variants. As a representative of the square-root methods for solving

21 the DLP, the baby-step-giant-step method is explained. Next, I introduce the

22 index calculus method (ICM) as a general paradigm for solving the DLP.

23 Various stages of the basic ICM are explained both for prime fields and

24 for extension fields of characteristic two.

25

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Search examples

$ grep method textfile.txt

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

and its variants. As a representative of the square-root methods for solving

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$ grep ’method ’ textfile.txt

method uses random squares, but illustrates the basic concepts of the

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$ grep method[\.] textfile.txt

grep: Invalid regular expression

$ grep ’method[\.]’ textfile.txt

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$ grep ’[a-z]*-[a-z-]*.*\.’ textfile.txt

public-key algorithms for encryption, key exchange, and digital signatures.

public-key protocols.

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

relation-collection and the linear-algebra stages. Next, I introduce the

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Making searches for multiple patterns

• Use the option -e multiple times.

$ grep -e ’method’ -e ’algorithm’ textfile.txt

This tutorial focuses on algorithms for factoring large composite integers

public-key algorithms for encryption, key exchange, and digital signatures.

These algorithms highlight the roles played by the apparent difficulty of

Two exponential-time integer-factoring algorithms are first covered:

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

and its variants. As a representative of the square-root methods for solving

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$

• This option also helps you specify patterns starting with -.

$ grep ’-key’ textfile.txt

grep: invalid option - ’k’

Usage: grep [OPTION]... PATTERNS [FILE]...

Try ’grep -help’ for more information.

$ grep -e ’-key’ textfile.txt

public-key algorithms for encryption, key exchange, and digital signatures.

public-key protocols.

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

The inverted search

• The option -v prints the lines that do not contain matches.

Lines not containing upper-case letters
$ grep -v ’[A-Z]’ textfile.txt

public-key algorithms for encryption, key exchange, and digital signatures.

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

method uses random squares, but illustrates the basic concepts of the

candidates for smoothness testing and of sieving.

for extension fields of characteristic two.

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Case-insensitive search using the option –i

$ grep ’method’ textfile.txt

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

and its variants. As a representative of the square-root methods for solving

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$ grep -i ’method’ textfile.txt

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

Quadratic Sieve Method (QSM) which brings the benefits of using small

and its variants. As a representative of the square-root methods for solving

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Word-based search using the option –w

Lines containing upper-case letters
$ grep ’[A-Z]’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self-sufficient, I start with some common and popular

These algorithms highlight the roles played by the apparent difficulty of

Two exponential-time integer-factoring algorithms are first covered:

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

relation-collection and the linear-algebra stages. Next, I introduce the

Quadratic Sieve Method (QSM) which brings the benefits of using small

As the third module, I formally define the discrete-logarithm problem (DLP)

and its variants. As a representative of the square-root methods for solving

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

Various stages of the basic ICM are explained both for prime fields and

$

Lines containing single-letter upper-case words
$ grep -w ’[A-Z]’ textfile.txt

make the exposition self-sufficient, I start with some common and popular

relation-collection and the linear-algebra stages. Next, I introduce the

As the third module, I formally define the discrete-logarithm problem (DLP)

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Printing line numbers and counting

• Use the option -n to print the line numbers before the printed lines.

Lines ending with non-alphabetic letters
$ grep ’[^a-zA-Z]$’ textfile.txt

public-key algorithms for encryption, key exchange, and digital signatures.

public-key protocols.

Two exponential-time integer-factoring algorithms are first covered:

candidates for smoothness testing and of sieving.

As the third module, I formally define the discrete-logarithm problem (DLP)

index calculus method (ICM) as a general paradigm for solving the DLP.

for extension fields of characteristic two.

$ grep -n ’[^a-zA-Z]$’ textfile.txt

6:public-key algorithms for encryption, key exchange, and digital signatures.

9:public-key protocols.

11:Two exponential-time integer-factoring algorithms are first covered:

17:candidates for smoothness testing and of sieving.

19:As the third module, I formally define the discrete-logarithm problem (DLP)

22:index calculus method (ICM) as a general paradigm for solving the DLP.

24:for extension fields of characteristic two.

$

• Use the option -c to print only the number of lines.

$ grep -c ’[^a-zA-Z]$’ textfile.txt

7

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Search recursively in subdirectories

• Use the option -r or -R.

Recursive search for nodep in the current directory (.)
$ grep -r ’nodep’ .

./libstaque/static/defs.h:typedef node *nodep;

./libstaque/static/stack.h:typedef nodep stack;

./libstaque/static/queue.h: nodep front;

./libstaque/static/queue.h: nodep back;

./libstaque/shared/defs.h:typedef node *nodep;

./libstaque/shared/stack.h:typedef nodep stack;

./libstaque/shared/queue.h: nodep front;

./libstaque/shared/queue.h: nodep back;

$

• Use the option -l only to print the names of the files that match. This is valid without

the flag -r or -R as well.

$ grep -r -l ’nodep’ .

./libstaque/static/defs.h

./libstaque/static/stack.h

./libstaque/static/queue.h

./libstaque/shared/defs.h

./libstaque/shared/stack.h

./libstaque/shared/queue.h

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Introduction to sed

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

The Unix command sed

• Abbreviation of stream editor.

• Processes the input line by line.

• Works only on the selected lines.

• Can do a limited set of work on the selected lines.

• Sends the output to stdout (unless you specify a file name).

• Does not modify the input file(s).

• Run sed as:

$ sed <OPTIONS> ’LINE-SEL-CRIT COMMAND(s) <ARG(S)>’ <FILE(S)>

• If the command(s) is/are written in COMMANDFILE, run sed as:

$ sed <OPTIONS> -f COMMANDFILE <FILE(S)>

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Selection of lines

• Selection by line numbers

• Lines are numbered 1,2,3,

• The last line has the special number $.

n Select only line number n

m,n Select only lines m through n (all intermediate lines are included)

m,$ Select from the m-th line to the end (last line)

• Selection by regular expression

• Supply the regular expression within a pair of delimiters (usually /)

• Examples

sed ’20 ...’ Select line 20 only.

sed ’5,10 ...’ Select lines 5 through 10.

sed ’1,$...’ Select all lines.

sed ’/^[A-Z]/ ...’ Select only the lines starting with an upper-case letter.

• If you want to select multiple ranges of lines, use multiple commands.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Summary of sed commands

p Print the selected lines

i\text Insert text before each selected line.

a\text Append text after each selected line.

c\text Replace the selected lines by text.

d Delete the selected lines (not from the input file).

s/pattern/newstring/options Substitute pattern by newstring in the selected lines. Some

options may be additionally supplied.

q Quit after the selected lines.

r infile Insert the content of infile after the selected lines.

w outfile Write the selected lines to outfile.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Printing selected lines

• sed always prints the input lines (after modifications if any).

• The lines selected for printing are printed twice.

• Run sed with the –n option to stop displaying the input lines.

Print lines ending with non-alphabetic characters
$ sed ’/[^a-zA-Z]$/ p’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self-sufficient, I start with some common and popular

public-key algorithms for encryption, key exchange, and digital signatures.

public-key algorithms for encryption, key exchange, and digital signatures.

These algorithms highlight the roles played by the apparent difficulty of

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

public-key protocols.

Two exponential-time integer-factoring algorithms are first covered:

Two exponential-time integer-factoring algorithms are first covered:

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

...

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Printing only the selected lines

$ sed -n ’/[^a-zA-Z]$/ p’ textfile.txt

public-key algorithms for encryption, key exchange, and digital signatures.

public-key protocols.

Two exponential-time integer-factoring algorithms are first covered:

candidates for smoothness testing and of sieving.

As the third module, I formally define the discrete-logarithm problem (DLP)

index calculus method (ICM) as a general paradigm for solving the DLP.

for extension fields of characteristic two.

$ sed -n ’15p’ textfile.txt

relation-collection and the linear-algebra stages. Next, I introduce the

$ sed -n ’15,20p’ textfile.txt

relation-collection and the linear-algebra stages. Next, I introduce the

Quadratic Sieve Method (QSM) which brings the benefits of using small

candidates for smoothness testing and of sieving.

As the third module, I formally define the discrete-logarithm problem (DLP)

and its variants. As a representative of the square-root methods for solving

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Inserting and appending

$ sed ’3,5i\A new line’ textfile.txt

Abstract

A new line

This tutorial focuses on algorithms for factoring large composite integers

A new line

and for computing discrete logarithms in large finite fields. In order to

A new line

make the exposition self-sufficient, I start with some common and popular

public-key algorithms for encryption, key exchange, and digital signatures.

These algorithms highlight the roles played by the apparent difficulty of

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

...

$ sed ’3,5a\A new line’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

A new line

and for computing discrete logarithms in large finite fields. In order to

A new line

make the exposition self-sufficient, I start with some common and popular

A new line

public-key algorithms for encryption, key exchange, and digital signatures.

These algorithms highlight the roles played by the apparent difficulty of

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Inserting and appending (continued)

$ sed -n ’3,5i\A new line’ textfile.txt

A new line

A new line

A new line

$ sed ’1,$a\ ’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self-sufficient, I start with some common and popular

public-key algorithms for encryption, key exchange, and digital signatures.

These algorithms highlight the roles played by the apparent difficulty of

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

...

$

• Multiple lines can be added using \n.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Replacing selected lines

$ sed ’3,8c\New line\nAnother new line’ textfile.txt

Abstract

New line

Another new line

public-key protocols.

Two exponential-time integer-factoring algorithms are first covered:

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

relation-collection and the linear-algebra stages. Next, I introduce the

Quadratic Sieve Method (QSM) which brings the benefits of using small

candidates for smoothness testing and of sieving.

...

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Deleting selected lines

$ sed ’3,8d’ textfile.txt

Abstract

public-key protocols.

Two exponential-time integer-factoring algorithms are first covered:

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

relation-collection and the linear-algebra stages. Next, I introduce the

Quadratic Sieve Method (QSM) which brings the benefits of using small

candidates for smoothness testing and of sieving.

As the third module, I formally define the discrete-logarithm problem (DLP)

and its variants. As a representative of the square-root methods for solving

the DLP, the baby-step-giant-step method is explained. Next, I introduce the

index calculus method (ICM) as a general paradigm for solving the DLP.

Various stages of the basic ICM are explained both for prime fields and

for extension fields of characteristic two.

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Pattern substitution

• The command is s/pattern/replacement string/options.

• Here, pattern is a regular expression.

• The replacement string may be a constant string.

• The matched string can be addressed by &.

• Some operations are permitted in some versions of Unix.

\U Convert to upper case

\L Convert to lower case

• One or more of the following three options may be supplied.

p Print the replaced strings to stdout (overriding –n).

g Substitution is made only once in each selected line (default behavior).

This option (meaning global) lets all possible substitutions in each line.

w outfile Write the substituted lines to outfile.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Pattern substitution examples

Replace - by --

$ sed ’/-/ s/-/--/’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self--sufficient, I start with some common and popular

public--key algorithms for encryption, key exchange, and digital signatures.

These algorithms highlight the roles played by the apparent difficulty of

solving the factoring and discrete--logarithm problems, for designing

public--key protocols.

Two exponential--time integer-factoring algorithms are first covered:

trial division and Pollard’s rho method. This is followed by two

sub--exponential algorithms based upon Fermat’s factoring method. Dixon’s

...

$ sed -n ’/-/ s/-/--/’ textfile.txt

$ sed -n ’/-/ s/-/--/p’ textfile.txt

make the exposition self--sufficient, I start with some common and popular

public--key algorithms for encryption, key exchange, and digital signatures.

solving the factoring and discrete--logarithm problems, for designing

public--key protocols.

Two exponential--time integer-factoring algorithms are first covered:

sub--exponential algorithms based upon Fermat’s factoring method. Dixon’s

relation--collection and the linear-algebra stages. Next, I introduce the

As the third module, I formally define the discrete--logarithm problem (DLP)

and its variants. As a representative of the square--root methods for solving

the DLP, the baby--step-giant-step method is explained. Next, I introduce the

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Pattern substitution examples (continued)

Global substitution
$ sed -n ’/-/ s/-/--/pg’ textfile.txt

make the exposition self--sufficient, I start with some common and popular

public--key algorithms for encryption, key exchange, and digital signatures.

solving the factoring and discrete--logarithm problems, for designing

public--key protocols.

Two exponential--time integer--factoring algorithms are first covered:

sub--exponential algorithms based upon Fermat’s factoring method. Dixon’s

relation--collection and the linear--algebra stages. Next, I introduce the

As the third module, I formally define the discrete--logarithm problem (DLP)

and its variants. As a representative of the square--root methods for solving

the DLP, the baby--step--giant--step method is explained. Next, I introduce the

$

Writing matched lines to matched.txt
$ sed -n ’/-/ s/-/--/gw matched.txt’ textfile.txt

$ cat matched.txt

make the exposition self--sufficient, I start with some common and popular

public--key algorithms for encryption, key exchange, and digital signatures.

solving the factoring and discrete--logarithm problems, for designing

public--key protocols.

Two exponential--time integer--factoring algorithms are first covered:

sub--exponential algorithms based upon Fermat’s factoring method. Dixon’s

relation--collection and the linear--algebra stages. Next, I introduce the

As the third module, I formally define the discrete--logarithm problem (DLP)

and its variants. As a representative of the square--root methods for solving

the DLP, the baby--step--giant--step method is explained. Next, I introduce the

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Pattern substitution application

Converting file to upper case: Method 1
$ sed ’1,$s/.*/\U&/’ textfile.txt

ABSTRACT

THIS TUTORIAL FOCUSES ON ALGORITHMS FOR FACTORING LARGE COMPOSITE INTEGERS

AND FOR COMPUTING DISCRETE LOGARITHMS IN LARGE FINITE FIELDS. IN ORDER TO

MAKE THE EXPOSITION SELF-SUFFICIENT, I START WITH SOME COMMON AND POPULAR

PUBLIC-KEY ALGORITHMS FOR ENCRYPTION, KEY EXCHANGE, AND DIGITAL SIGNATURES.

THESE ALGORITHMS HIGHLIGHT THE ROLES PLAYED BY THE APPARENT DIFFICULTY OF

SOLVING THE FACTORING AND DISCRETE-LOGARITHM PROBLEMS, FOR DESIGNING

PUBLIC-KEY PROTOCOLS.

TWO EXPONENTIAL-TIME INTEGER-FACTORING ALGORITHMS ARE FIRST COVERED:

TRIAL DIVISION AND POLLARD’S RHO METHOD. THIS IS FOLLOWED BY TWO

SUB-EXPONENTIAL ALGORITHMS BASED UPON FERMAT’S FACTORING METHOD. DIXON’S

METHOD USES RANDOM SQUARES, BUT ILLUSTRATES THE BASIC CONCEPTS OF THE

RELATION-COLLECTION AND THE LINEAR-ALGEBRA STAGES. NEXT, I INTRODUCE THE

QUADRATIC SIEVE METHOD (QSM) WHICH BRINGS THE BENEFITS OF USING SMALL

CANDIDATES FOR SMOOTHNESS TESTING AND OF SIEVING.

...

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Pattern substitution application (continued)

Converting file to upper case: Method 2
$ sed ’1,$s/[a-z]/\U&/g’ textfile.txt

ABSTRACT

THIS TUTORIAL FOCUSES ON ALGORITHMS FOR FACTORING LARGE COMPOSITE INTEGERS

AND FOR COMPUTING DISCRETE LOGARITHMS IN LARGE FINITE FIELDS. IN ORDER TO

MAKE THE EXPOSITION SELF-SUFFICIENT, I START WITH SOME COMMON AND POPULAR

PUBLIC-KEY ALGORITHMS FOR ENCRYPTION, KEY EXCHANGE, AND DIGITAL SIGNATURES.

THESE ALGORITHMS HIGHLIGHT THE ROLES PLAYED BY THE APPARENT DIFFICULTY OF

SOLVING THE FACTORING AND DISCRETE-LOGARITHM PROBLEMS, FOR DESIGNING

PUBLIC-KEY PROTOCOLS.

TWO EXPONENTIAL-TIME INTEGER-FACTORING ALGORITHMS ARE FIRST COVERED:

TRIAL DIVISION AND POLLARD’S RHO METHOD. THIS IS FOLLOWED BY TWO

SUB-EXPONENTIAL ALGORITHMS BASED UPON FERMAT’S FACTORING METHOD. DIXON’S

...

$ sed -n ’1,$s/[a-z]/\U&/gp’ textfile.txt

ABSTRACT

THIS TUTORIAL FOCUSES ON ALGORITHMS FOR FACTORING LARGE COMPOSITE INTEGERS

AND FOR COMPUTING DISCRETE LOGARITHMS IN LARGE FINITE FIELDS. IN ORDER TO

MAKE THE EXPOSITION SELF-SUFFICIENT, I START WITH SOME COMMON AND POPULAR

PUBLIC-KEY ALGORITHMS FOR ENCRYPTION, KEY EXCHANGE, AND DIGITAL SIGNATURES.

THESE ALGORITHMS HIGHLIGHT THE ROLES PLAYED BY THE APPARENT DIFFICULTY OF

SOLVING THE FACTORING AND DISCRETE-LOGARITHM PROBLEMS, FOR DESIGNING

PUBLIC-KEY PROTOCOLS.

TWO EXPONENTIAL-TIME INTEGER-FACTORING ALGORITHMS ARE FIRST COVERED:

TRIAL DIVISION AND POLLARD’S RHO METHOD. THIS IS FOLLOWED BY TWO

SUB-EXPONENTIAL ALGORITHMS BASED UPON FERMAT’S FACTORING METHOD. DIXON’S

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Premature quitting

Quit after Line 5
$ sed ’5q’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self-sufficient, I start with some common and popular

$

Quit after a line ending with a non-alphabetic character
$ sed ’/[^a-zA-Z]$/q’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self-sufficient, I start with some common and popular

public-key algorithms for encryption, key exchange, and digital signatures.

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Inserting an input file

Insert infile.txt after every line containing a hyphen
$ cat infile.txt

*** A hyphen is detected in the above line

$ sed ’/-/ r infile.txt’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self-sufficient, I start with some common and popular

*** A hyphen is detected in the above line

public-key algorithms for encryption, key exchange, and digital signatures.

*** A hyphen is detected in the above line

These algorithms highlight the roles played by the apparent difficulty of

solving the factoring and discrete-logarithm problems, for designing

*** A hyphen is detected in the above line

public-key protocols.

*** A hyphen is detected in the above line

...

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Write selected lines to a file

Write all lines not ending with alphabetic letters to outfile.txt
$ sed -n ’/[^a-zA-Z]$/ w outfile.txt’ textfile.txt

$ cat outfile.txt

public-key algorithms for encryption, key exchange, and digital signatures.

public-key protocols.

Two exponential-time integer-factoring algorithms are first covered:

candidates for smoothness testing and of sieving.

As the third module, I formally define the discrete-logarithm problem (DLP)

index calculus method (ICM) as a general paradigm for solving the DLP.

for extension fields of characteristic two.

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Negating a command

• The negated command is denoted by a preceding !.

• The action in the command is taken on the unselected lines.

Print lines 1–15
$ sed -n ’16,$!p’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self-sufficient, I start with some common and popular

public-key algorithms for encryption, key exchange, and digital signatures.

These algorithms highlight the roles played by the apparent difficulty of

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

Two exponential-time integer-factoring algorithms are first covered:

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

method uses random squares, but illustrates the basic concepts of the

relation-collection and the linear-algebra stages. Next, I introduce the

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Negating a command (continued)

Print lines not containing -

$ sed -n ’/-/!p’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

These algorithms highlight the roles played by the apparent difficulty of

trial division and Pollard’s rho method. This is followed by two

method uses random squares, but illustrates the basic concepts of the

Quadratic Sieve Method (QSM) which brings the benefits of using small

candidates for smoothness testing and of sieving.

index calculus method (ICM) as a general paradigm for solving the DLP.

Various stages of the basic ICM are explained both for prime fields and

for extension fields of characteristic two.

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Negating a command (continued)

Add a new line after every non-empty line
$ sed ’/^$/!a\ ’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self-sufficient, I start with some common and popular

public-key algorithms for encryption, key exchange, and digital signatures.

These algorithms highlight the roles played by the apparent difficulty of

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

Two exponential-time integer-factoring algorithms are first covered:

trial division and Pollard’s rho method. This is followed by two

sub-exponential algorithms based upon Fermat’s factoring method. Dixon’s

...

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Running multiple commands

• Commands can be separated by semicolon (;).

• But ; can be a part of a string (for example, during insert, append, or change).

• A better option is to supply each command with the option -e.

• The commands are executed in the sequence in which they appear.

• The order of the commands may matter.

• Another option is to write multiple commands (possibly with different selection

criteria), and invoke sed with the -f option.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Multiple commands separated by ;

$ sed ’3,4p;8p;9q’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

and for computing discrete logarithms in large finite fields. In order to

make the exposition self-sufficient, I start with some common and popular

public-key algorithms for encryption, key exchange, and digital signatures.

These algorithms highlight the roles played by the apparent difficulty of

solving the factoring and discrete-logarithm problems, for designing

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Problems with the separator approach

Wrong identification of a command as text
$ sed ’/[A-Z]/a\Substitution made above;1,$s/[A-Z]/\L&/g’ textfile.txt

Abstract

Substitution made above;1,$s/[A-Z]/L&/g

This tutorial focuses on algorithms for factoring large composite integers

Substitution made above;1,$s/[A-Z]/L&/g

and for computing discrete logarithms in large finite fields. In order to

Substitution made above;1,$s/[A-Z]/L&/g

make the exposition self-sufficient, I start with some common and popular

Substitution made above;1,$s/[A-Z]/L&/g

public-key algorithms for encryption, key exchange, and digital signatures.

...

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Getting it done by multiple –e options

$ sed -e ’/[A-Z]/a\Substitution made above’ -e ’1,$s/[A-Z]/\L&/g’ textfile.txt

abstract

Substitution made above

this tutorial focuses on algorithms for factoring large composite integers

Substitution made above

and for computing discrete logarithms in large finite fields. in order to

Substitution made above

make the exposition self-sufficient, i start with some common and popular

Substitution made above

public-key algorithms for encryption, key exchange, and digital signatures.

these algorithms highlight the roles played by the apparent difficulty of

Substitution made above

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

two exponential-time integer-factoring algorithms are first covered:

Substitution made above

...

$

Note: Swapping the two commands (first substitute, then append) does not append at all. . .

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

The order matters

. . . because after global substitution, no line contains any upper-case letter.

First substitute, then quit
$ sed -e ’/-/s/-/--/g’ -e ’/-/q’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self--sufficient, I start with some common and popular

$

First quit (then substitute)
$ sed -e ’/-/q’ -e ’/-/s/-/--/g’ textfile.txt

Abstract

This tutorial focuses on algorithms for factoring large composite integers

and for computing discrete logarithms in large finite fields. In order to

make the exposition self-sufficient, I start with some common and popular

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Writing sed commands in a file

$ cat commands.txt

/[A-Z]/a\Substitution made above

1,$s/[A-Z]/\L&/g

$ sed -f commands.txt textfile.txt

abstract

Substitution made above

this tutorial focuses on algorithms for factoring large composite integers

Substitution made above

and for computing discrete logarithms in large finite fields. in order to

Substitution made above

make the exposition self-sufficient, i start with some common and popular

Substitution made above

public-key algorithms for encryption, key exchange, and digital signatures.

these algorithms highlight the roles played by the apparent difficulty of

Substitution made above

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

two exponential-time integer-factoring algorithms are first covered:

Substitution made above

...

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Writing an executable sed script

$ which sed

/usr/bin/sed

$ cat commands.sed

#!/usr/bin/sed -f

/[A-Z]/a\Substitution made above

1,$s/[A-Z]/\L&/g

$ chmod 755 commands.sed

$./commands.sed textfile.txt

abstract

Substitution made above

this tutorial focuses on algorithms for factoring large composite integers

Substitution made above

and for computing discrete logarithms in large finite fields. in order to

Substitution made above

make the exposition self-sufficient, i start with some common and popular

Substitution made above

public-key algorithms for encryption, key exchange, and digital signatures.

these algorithms highlight the roles played by the apparent difficulty of

Substitution made above

solving the factoring and discrete-logarithm problems, for designing

public-key protocols.

two exponential-time integer-factoring algorithms are first covered:

Substitution made above

...

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

