
CS19001/CS19002 PROGRAMMING AND DATA STRUCTURES LABORATORY
Supplementary Assignment

Date: 02–February–2015 (Not for submission)

Part 1

Let P and Q be two points in the two-dimensional plane. We say that P dominates Q if both the conditions x(P) ≥ x(Q)
and y(P) ≥ y(Q) are satisfied. A point P in a collection is called a champion if P dominates all other points in the
collection. Not all collections contain champions (for example, consider the three points (1,1), (3,3), (2,4)). But if a
champion exists in a collection, it is unique. In this case, the champion has both the largest x-coordinate and the largest
y-coordinate in the collection.

Write a program that enters a loop. Each iteration of the loop body first reads the x- and y-coordinates of a new point
(call them x and y). Assume that x and y are integer values. If either x or y (or both) is/are negative, then the program
terminates. Otherwise, the champion among all the points read so far is printed, provided that the champion exists.

Maintain the largest x-coordinate and the largest y-coordinate read so far. Suppose that just before reading the current
point (x, y), a champion existed. If the new point (x, y) dominates the old champion, then the new point now becomes
the current champion. If the new point is dominated by the old champion, then the old champion continues to remain
the current champion. Otherwise, the current champion ceases to exist.

Handle the case when the old champion (just before reading (x, y)) did not exist.

Sample output

New point: (678, 41). Current champion: (678, 41)
New point: (49, 223). Current champion: None
New point: (836, 300). Current champion: (836, 300)
New point: (98, 170). Current champion: (836, 300)
New point: (76, 853). Current champion: None
New point: (895, 929). Current champion: (895, 929)
New point: (266, 403). Current champion: (895, 929)
New point: (770, 725). Current champion: (895, 929)
New point: (594, 951). Current champion: None
New point: (15, 137). Current champion: None
New point: (388, 982). Current champion: None
New point: (-1, -1). Quitting...

Part 2

Suppose that you drop an apple from a height of N meters. After t seconds, the apple covers a distance of ½gt2. Assume
that N is a positive integer. Let ti be the time at which the apple covers i meters, where 0 ≤ i ≤ N. Print in a line, for each
i in this range, the time ti and the speed of the apple at that time.

In order to have a visual effect of the free fall, print the i-th line at time ti. This indicates that between the printings of
the i-th line and the (i + 1)-st line, your program should wait for (ti+1 – ti) seconds. You may use the following call:

usleep(nms);

This causes the program to sleep (do nothing) for nms microseconds (an integer value). You need to include the header
file <unistd.h>. No extra compile-time flag is necessary (you need only the -lm flag for square roots). Ignore the time
taken by the computations and the printing in the loop body.

Sample output

Enter height: 10
 Time Distance Speed
 +++ 0.000000 0 0.000000
 +++ 0.451524 1 4.429447
 +++ 0.638551 2 6.264184
 +++ 0.782062 3 7.672027
 +++ 0.903047 4 8.858894
 +++ 1.009638 5 9.904544
 +++ 1.106003 6 10.849885
 +++ 1.194619 7 11.719215
 +++ 1.277102 8 12.528368
 +++ 1.354571 9 13.288341
 +++ 1.427843 10 14.007141
 !!! BANG !!!! BANG !!!! BANG !!!

Note: Do not use arrays in any of the parts.

