
CS19001/CS19002 PROGRAMMING AND DATA STRUCTURES LABORATORY
Assignment No: 7

Last Date of Submission: 23–March–2015

A computer (or TV) screen consists of a two-dimensional array of dots, called pixels. For example, a 16:9 widescreen
HDTV screen has a 1920 × 1080 array of pixels. A color screen actually consists of three such pixel arrays
corresponding to the fundamental color components Red, Green and Blue (RGB). In this assignment, you deal with
two-color (black and white) images only. Moreover, you simulate the screen in the text mode so that you can print the
screen output to your terminal.

Declare a two-dimensional array (say, of size MAXSIZE × MAXSIZE)
to stand for the screen. Your task is to draw a circle of radius r at the top
left corner. The points on the circle do not in general have integer
coordinates. Here, you deal with pixels which have integer coordinates.
Therefore, you need to approximate the circle to a set of integer-valued
points on the screen. The adjacent figure demonstrates this idea. The red
circle is the actual circle. When projected to the pixel array, we have
only the blackened pixels that approximately stand for the circle. If you
count the array indices from the top left corner, the center of the circle is
at the array element at index (r, r) (the blue-bordered pixel marked
(0,0)). The entire circle fits inside the (2r + 1) × (2r + 1) segment of your
screen array. The equation of the circle is x2 + y2 = r2. This is symmetric
about the x- and y-coordinates. You can draw thicker circles too using a
strategy described in Part 2 below.

Part 1

Initialize the top left (2r + 1) × (2r + 1) part of your two-dimensional array as unmarked. As you discover pixels on the
circle, mark those pixels. After all the pixels on the circle are marked, print the (2r + 1) × (2r + 1) part of your array.

Here follows a strategy how you can identify the black pixels. Run h from 0 to r. For each h, get the rounded value k of
√(r2 – h2). Mark the eight pixels (±h, ±k) and (±k, ±h) relative to the center of the circle.

Part 2

In this part, you draw a circle of thickness t pixels, where 1 ≤ t ≤ r. Use the same strategy as described in Part 1. Instead
of drawing only one circle with radius r, now draw t circles of radii r, r – 1, r – 2, … , r – t + 1. Print the thick circle.

For the first two parts, write a single function which marks a circle of radius ρ at the center (0,0) of the circle of radius
r. In part 1, call the function with ρ = r only. In Part 2, make additional t – 1 calls with ρ = r, r – 1, r – 2, … , r – t + 1.

Part 3

Your printing in Part 2 often reveals that there are holes in the thick circle. We call a pixel a hole if it is unmarked and
all its four adjacent pixels are marked. Identify all the holes, and mark them. Print the refined thick circle again. Write a
function for this part.

Submit a single C source file implementing all of the three parts.

Sample Output

The output on the next page shows a marked cell by the character @ and an unmarked cell by a space. If you print the
(2r + 1) × (2r + 1) array as such, the output will not look like a circle, because characters typically have larger height
than width (moreover, there may be some spacing between two consecutive lines). For a better-looking output, a space
is printed after printing each character of the (2r + 1) × (2r + 1) subarray. The output of Part 2 has 20 holes that are
filled in Part 3. The picture above was drawn by eye estimation, and may fail to match an actual program output.

Enter radius (r): 10
Enter thickness (t): 4

+++ Circle of thickness 1:
 @ @ @ @ @ @ @
 @ @ @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @
 @ @ @ @
 @ @ @ @ @ @ @

+++ Circle of thickness 4:
 @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @

+++ Circle of thickness 4 after refinement:
 @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @ @ @ @ @
 @ @ @ @ @ @ @

