
CS19001/CS19002 PROGRAMMING AND DATA STRUCTURES LABORATORY
Assignment No: 4

Last Date of Submission: 02-March-2015

Let A be an array of n positive integers. A positive integer s is said to be a subset sum from A if there exist indices

0 ≤ i1 < i2 < … < ik ≤ n – 1

such that

s = A[i1] + A[i2] + … + A[ik].

Notice that the array A need not be sorted, and may contain duplicate entries. Moreover, a given sum s may be realized
in multiple ways.

Part I

Write a function to populate the array A. Pass the array A as the only parameter. The function first reads the number n of
elements that the array will store (1 ≤ n ≤ 20). The elements A[0], A[1], …, A[n – 1] are then supplied one by one by the
user. The function should return the array size n.

Part II

The user enters a positive integer s. You determine whether s is a subset sum from A. For this, write another function
which takes three arguments: A, n and s. If s is a subset sum from A, the function prints a way in which the sum s is
realized. If s is not a subset sum from A, a message is printed to that effect. This function does not return anything.

This function should implement the algorithm sketched here. Vary a counter c in the range [0, 2n – 1]. The n-bit binary
representations of all these values of c are precisely all the bit strings of length n. Each bit string is naturally identified
with a subset of the array indices. For example, let n = 5. The counter value c = 25 = 24 + 23 + 20 = (11001)2 is identified
with the array indices {0, 3, 4}, and the subset sum corresponding to this is A[0] + A[3] + A[4]. If, for any of the 2n

values of c, the subset sum equals s, then the search is successful.

In order to find the n-bit binary representation of c, you may repeatedly divide n by 2. Another possibility is to use bit-
wise operators. For example, the i-th bit of c is one if and only if c & (1U << i) is non-zero. Here << is left shift by i
bits, and & is the bit-wise AND operator.

Part III

In this part, you write a recursive function in order to find out all subset sums coming from A. Let S be the sum of all
the n elements of A. Since A consists of positive integers only, the subset sums from A must be in the range [0, S – 1]
(here, the zero subset sum corresponds to the null set of indices). B is an array of size S + 1. The array entry B[s] is
intended to store a count c in the range [0, 2n – 1] such that s is the subset sum corresponding to the count c (see Part II
for the explanation). Each entry in B is initialized to –1. The recursive function takes the following arguments:

A The input array
n The size of A
i An index in A
B The array B as introduced above
s A subset sum from the subarray (A[0], A[1], …, A[i – 1])
c A count corresponding to the subset sum s

The function works as follows (in pseudocode). It modifies B[] as the only effect, and needs to return nothing.

If B[s] equals –1, record in B[s] the count c.
If no further recursion is possible, return.
Make the first recursive call in which A[i] is included in the subset sum.
Make the second recursive call in which A[i] is excluded from the subset sum.

After the recursive function returns to main() (or a wrapper function), look at the array B. For each index s in the range
[0, S] with B[s] ≠ –1, a subset realizing the sum s is stored as c = B[s]. Print the subset corresponding to c.

Submit a single C source file.

Sample output

Enter array size (between 1 and 20): 5
A[0] = 6
A[1] = 4
A[2] = 7
A[3] = 4
A[4] = 9
Enter sum: 23
 23 = A[0] + A[1] + A[3] + A[4] = 6 + 4 + 4 + 9
21 different sums are possible:
 0
 4 = A[1] = 4
 6 = A[0] = 6
 7 = A[2] = 7
 8 = A[1] + A[3] = 4 + 4
 9 = A[4] = 9
 10 = A[0] + A[1] = 6 + 4
 11 = A[1] + A[2] = 4 + 7
 13 = A[0] + A[2] = 6 + 7
 14 = A[0] + A[1] + A[3] = 6 + 4 + 4
 15 = A[0] + A[4] = 6 + 9
 16 = A[2] + A[4] = 7 + 9
 17 = A[0] + A[1] + A[2] = 6 + 4 + 7
 19 = A[0] + A[1] + A[4] = 6 + 4 + 9
 20 = A[1] + A[2] + A[4] = 4 + 7 + 9
 21 = A[0] + A[1] + A[2] + A[3] = 6 + 4 + 7 + 4
 22 = A[0] + A[2] + A[4] = 6 + 7 + 9
 23 = A[0] + A[1] + A[3] + A[4] = 6 + 4 + 4 + 9
 24 = A[1] + A[2] + A[3] + A[4] = 4 + 7 + 4 + 9
 26 = A[0] + A[1] + A[2] + A[4] = 6 + 4 + 7 + 9
 30 = A[0] + A[1] + A[2] + A[3] + A[4] = 6 + 4 + 7 + 4 + 9

