
CS13002 Programming and Data Structures, Spring 2005, Section 4/D

Laboratory Test II Total points: 25 March 22, 2005

For students with odd PC numbers

This exercise deals with pattern matching in strings. Let A, B, C be given strings. We plan to find the
pattern B ∗C in A. Here ∗ stands for any substring. So the pattern B ∗C means the occurrence of the string
B followed by any string (possibly empty) followed in turn by the string C. As an example, consider the
following strings:

A = "Dashing through the snow on a one-horse open sleigh"
B = "now on a one"
C = "pen"

The pattern B ∗ C exists in A:

Dashing through the snow on a one-horse open sleigh
<----------><------><->

B * C

On the other hand, search fails with A and B as above but for the following values of C:

C = "Jingle" (C is not at all a substring of A)
C = "rough" (C comes earlier than B in A)
C = "on" (No occurrence of C strictly after the only occurrence of B in A)

Write a program that does the following:

• Read three strings A, B and C.

• Report if the pattern B ∗ C is present in A.

• If the search is successful, also report the start index of a match.

Use static character arrays to store the strings A,B,C. A function that returns the index of the leftmost
match of a string T in a string S may be helpful for your program. Note that the word substring precludes
the possibility of gaps in the matching. For example, horses and tough are not substrings of A in the above
example.

Report the output of your program for the following test cases:

A = "What fun it is to ride and sing a sleighing song tonight"

a) B = "fun and sing" C = "song"
b) B = "it is to rid" C = "e and s"
c) B = "night" C = ""
d) B = "" C = "tonight"
e) B = "to ride and sing" C = "it is"
f) B = "sleighing" C = "hi"
g) B = "g" C = "g"



CS13002 Programming and Data Structures, Spring 2005, Section 4/D

Laboratory Test II Total points: 25 March 22, 2005

For students with even PC numbers

This exercise deals with pattern matching in strings. Let A, B, C be given strings and n a non-negative
integer. We plan to find the pattern B.{n}C in A. Here . stands for a single character and {n} implies
exactly n occurrences. So the pattern B.{n}C means the occurrence of the string B followed by any
sequence of exactly n characters followed in turn by the string C. As an example, consider the following:

A = "Dashing through the snow on a one-horse open sleigh"
B = "rough the"
C = "on"
n = 6

The pattern B.{n}C exists in A:

Dashing through the snow on a one-horse open sleigh
<-------><----><>

B n C

For the above A,B,C match also occurs for n = 11. For no other values of n a match occurs. As another
example, take A as above, but B = "on", C = "or" and n = 3. Though the leftmost match of B in A does
not correspond to the pattern B.{n}C, the second match of B in A does.

Write a program that does the following:

• Read three strings A, B and C and a non-negative integer n.

• Report if the pattern B.{n}C is present in A.

• If the search is successful, also report the start index of a match.

Use static character arrays to store the strings A,B,C. A function that returns the index of the leftmost
match of a string T in a string S may be helpful for your program. Note that the word substring precludes
the possibility of gaps in the matching. For example, horses and tough are not substrings of A in the above
example.

Report the output of your program for the following test cases:

A = "What fun it is to ride and sing a sleighing song tonight"

a) B = "hat fun" C = "is to" n = 4
b) B = "ing" C = "ong" n = 15
c) B = "g" C = "g" n = 14
d) B = "unit" C = "rid" n = 7
e) B = "son" C = "nights" n = 4
f) B = "igh" C = "" n = 10
g) B = "" C = "hat" n = 2


