
CS39002 Operating Systems Laboratory
Spring 2014

Assignment 3
Due on 14–Feb–2014, 1:00pm

Part 1

In this part, you complete the shell that you started in Assignment 2. More precisely, you add the following features to
your shell.

1. Support background execution of commands. Normally, when you type a command at the shell prompt, the
prompt does not return until the command is finished. For background executions, the prompt returns
immediately, the command continues execution in the background. Typing an & at the end of a command (like
a.out &) should make it execute in the background.

2. Allow the redirection of the output of a program to a file using > and the redirection of the input of a program
from a file using <. For example, typing a.out > outfile should send whatever was supposed to be displayed on
the screen by a.out to the file outfile . Similarly, typing a.out < infile should make a.out take the inputs from
the file infile instead of the keyboard. Both redirections may be used like a.out < infile > outfile.

3. Allow the redirection of the output of one command to the input of another by using the | symbol. For
example, if there is a program a.out that writes a string abcde to the display, and there is a program b.out that
takes as input a string typed from the keyboard, counts the number of characters in the string, and displays it,
then typing a.out | b.out at your shell prompt should display 5 (the output abcde from a.out was fed as input to
b.out, and 5, the number of characters in abcde, is printed). Use the pipe command. Any number of
redirections should be allowed (like ls -l | grep -v A | wc | wc). Moreover, pipes may be used in conjunction
with input or output redirection (like cat < input.txt | grep -v A | wc | wc > output.txt).

4. When the shell is executing a command, the user may hit Control+c in order to terminate the execution of the
command. However, hitting Control+c in the idle shell does not terminate the shell. The user should hit
Control+d (or type exit) in order to terminate the shell.

Part 2

In this part, you are asked to implement a client-server system using message queues. In this system, we have a set of
clients which send strings to the (single) server and the task of the server is to receive the string, change the case of the
received string, and retransmit the string back to the right client (from the client it received the string). We assume that
the two processes, client and server, communicate via two message queues “Up” and “Down” (known to all the
processes a priori). The client reads a string from the standard input and sends it to the server via the Up queue, then
waits for the server's answer on the Down queue. The task of the server is to convert characters from lower case to
upper case and vice versa. For example, if the client sends the message loweR case via the Up message queue, the
server will read the message, convert it, and send LOWEr CASE via the Down queue. When the client receives the
message from the server, it prints it out. You may assume that the maximum size of any message is 256 bytes. Multiple
clients must be able to connect to the Up and Down queues. However, the server must be intelligent enough to
distinguish different clients and must send the converted string to the right client. The server should also print the time
of receiving each message. Implement the client and server for this problem.

Sample Input-Output

Terminal 1 Terminal 2
$./server & $./client
$./client Insert message to send to server: UPPER CASE
Insert message to send to server: messaGe Processed msg from server: upper case
Msg received at time: Fri Feb 7 12:51:47 IST 2014 $
Processed msg from server: MESSAgE
$
Msg received at time: Fri Feb 7 12:52:44 IST 2014

Submit the three files separately: the updated myshell.c, and client.c and server.c for Part 2.

