
Convex hulls

We aregiven a (finite) set points in the plane. Our task is to compute the smallest convex region that contains
all thesepoints. It is easy to conceive that this smallest convex region must be a convex polygon (since the
given set of points is finite). We call this smallest convex region the convex hull of the given set of points.

You may visualize a convex hull i n the following way. Imagine that a nail i s struck on a flat groundat
each of the given points. We are given a sufficiently stretchable elastic rubber band. Our task is to placethe
rubber band in such a way that it encloses all the nails, and the total area enclosed by the stretched band is as
small aspossible. Thenext figure shows the convex hull of a set of sixteen points.

The upper hull

The lower hullThe convex hull

L R

Being a convex polygon, a convex hull can be represented by a sequence of vertices appearing in the
clockwiseorder. We can break this sequencein two parts. Let L andR bethe leftmost andrightmost points in
this polygon(clearly also in the given set of points). The clockwiselisting of verticeson the polygonstarting
from L and ending at R is called the upper hull of the given points. Analogously, the clockwiselisting of the
verticesof the convex hull starting at R and ending at L is the lower hull of the given points. If n points are
given, then the convex hull contains O(n) vertices(and edges). It then easily follows that given the convex
hull , we can compute the upper and lower hulls in O(n) time. Conversely, given the upper and lower hulls,
we can compute the entire convex hull i n O(n) time. It, therefore, sufficesto compute the upper and lower
hulls individually.

For the sakeof brevity, let meintroduce somenotations. Let S be thegiven set of points. The convex hull
of S is denoted byCH(S), theupper hull of S by UH(S), and the lower hull by LH(S). Wewill assume that
the points in S are in general position. In this context, this assertion indicates that the x-coordinatesof the
points in S are (pairwise) distinct, and also that no threeof thesepoints are colli near.

Preparata and Hong’s divide-and-conquer algorithm

I now describe a recursive algorithm for computing CH(P1, . . . , Pn) that runs in time O(n log n). Since
sorting n points satisfies the same time bound, we may assume without loss of generality that the points
P1, . . . , Pn are already sorted with respect to their x coordinates. Moreover, we assume that the points are
in general position so that the x coordinatesof P1, . . . , Pn form a strictly increasing sequence. Consider the
following recursive algorithm.

if (n ≤ 3) manually compute and return CH(P1, . . . , Pn);

Recursively compute C1 = CH(P1, . . . , P⌈n/2⌉);

Recursively compute C2 = CH(P⌈n/2⌉+1, . . . , Pn);

Merge C1 and C2 to C = CH(P1, . . . , Pn);

Return C;

Let T (n) be the running time for this recursive algorithm. Assume that C1 and C2 can be merged in O(n)
time. Wethen have:

T (n) = T (⌈n/2⌉) + T (⌊n/2⌋) + O(n) for n > 3 .

Wehave seen that this divide-and-conquer recurrencehasthe solution T (n) = O(n log n).



upper tangent

lower tangent

Left Hull
(LH)

Right Hull
(RH)

I need to supply an algorithm that can merge C1 and C2 in linear time. Since the points are sorted and
have distinct x coordinates, the left hull C1 is separated from the right hull C2 by a vertical strip. In view of
this, an ideaill ustrated in the above figure works.

A line L is called a tangent (or a supporting line) to a convex polygon if it touchesthe convex polygon
and all verticesof the convex polygonlieon or to one side of L. Weplan to compute theupper and the lower
tangents common to both C1 and C2. We discard from both C1 and C2 all the points strictly between these
two tangents. The remaining points can be easily presented in the form of a clockwise sequencedefining the
merged hull C.

Evidently, the merging algorithm runs in O(n) time, provided that we can compute the two tangents in
O(n) time. Here I describe an algorithm for the computation of the upper tangent only. Thedetermination of
the lower tangent can be symmetrically handled.

The following figure ill ustrates the computation of the upper tangent. We let two points P1, P2 march
alongthe perimeters of C1 and C2 respectively. Initially, P1 is the rightmost point of C1 and P2 the leftmost
point of C2. Thepoint P1 jumpsfrom avertex in C1 to thenext vertex in the counterclockwiseorder, whereas
P2 movesin the clockwiseorder alongthe boundary of C2. At every intermediate instant, we check whether
the oriented segment P1P2 is an upper tangent to C1 and the oriented segment P2P1 is an upper tangent to
C2. This means that we check whether both the neighboring points of P1 lie to the right of P1P2 and both
the neighboring points of P2 lie to the left of P2P1.1 If this condition is not satisfied at P1 (resp. P2), we
moveP1 (resp. P2) to thenext vertex in the counterclockwise(resp. clockwise) direction alongC1 (resp. C2).
Eventually, P1 and P2 reach the verticesdefining the upper tangent. As the following figure ill ustrates, the
verticesdefining the common tangent need not be the topmost verticesof the two hulls (Seethe left hull ).

Third walk in LH

First walk in LH

Second walk in RH

Left Hull
(LH)

Right Hull
(RH)

Computing the upper tangent

1Let L be the oriented linesegment from apoint P1 = (x1, y1) to apoint P2 = (x2, y2). Assume that P = (h, k) isany point in
the plane. Consider the determinant:

side(P1, P2, P ) = det

(

1 x1 y1

1 x2 y2

1 h k

)

.

It turns out that the point P lies on, to the left, or to the right of the oriented line L according as the determinant side(P1, P2, P ) is
zero, positive, or negative, respectively.



The following code snippet summarizesthe algorithm for computing the upper tangent.

Initialize P1 to the rightmost point of the left hull C1;

Initialize P2 to the leftmost point of the right hull C2;

while (P1P2 is not a common tangent to C1 and C2) {

while (P1P2 is not an upper tangent of C1)

advance P1 to the next (counterclockwise) vertex of C1;

while (P2P1 is not an upper tangent of C2)

advance P2 to the next (clockwise) vertex of C2;

}

Return (P1, P2);

Thoughintuitively clear, it demands aformal proof to settle that the above algorithm correctly computes
the upper tangent, i.e., the moving points P1, P2 do not overshoot the respective verticesof tangency on C1

andC2. I leave theproof to the reader as an exercise and concentrate on the running timeof the algorithm.

Let h1 andh2 be thenumbers of verticesin C1 andC2 respectively. Thoughwehave anested loopin the
code, every step in the walk advances either P1 or P2. Therefore, after at most h1 + h2 steps, the walk stops.
Sinceh1 + h2 ≤ n, we conclude that the upper tangent can be computed in O(n) time.


