
CS39002: Operating Systems Lab
Spring 2012

Assignment 7
Due: March 22, 2012, 1 pm

Part 1: Designing a personal memory-management library

In this part, you design a user-level memory-manager library for C as follows. When you write a C
program, you use malloc(), free() etc. to allocate/free memory. With the new library that you
design here, your C programs will not use malloc / free directly, but will instead call the functions
provided by your library to allocate/free memory. So the output of this part is a static library
mem_mgmt that contains the following list of functions for memory management. The functions
work as described below.

• int init_mem(): This should be the first function to be called by any C program that uses
your memory manager. This initializes the data structures necessary for the memory
manager. It also creates a chunk of memory to manage of size 16 KB (this is to be created
by a standard malloc() call). All further allocations will be done from this chunk of memory,
which we henceforth refer to as the personal memory pool. The function should return 1 in
case of error, 0 otherwise.

• void * mem_malloc(int size): This function allocates memory of size size bytes from the
personal memory pool created and managed by the memory manager. If allocation is
successful, address of the first location is returned; if not, NULL is returned.

• void mem_free(void *p): This function frees a memory pointed to by p and allocated earlier
by a mem_malloc() call. The freed memory is returned to the personal memory pool.

• void mem_stat(): This function displays the total allocation from the personal memory pool
and the amount of free space left in the pool, the blocks allocated (starting address, size),
and the free blocks.

You should use the buddy system to manage the memory. Assume that the minimum request size
will be for 16 bytes (if a request is for less than this, allocate it 16 bytes at least).

The memory manager should flag an error if allocation/freeing is attempted before initializing the
memory manager (that is, before calling init_mem()). You may write any other internal function that
you may need.

Create an appropriate header file mem_mgmt.h to store all type definitions and function prototypes.

Part 2: A test program

First, test your library by writing a C program mem_test.c that first initializes the memory manager,
and then randomly allocates/frees memory. Use mem_stat() to verify that the memory looks fine.
Check for boundary cases, like trying to allocate when memory is full, trying to free non-existent
memory, etc.

Remember that the functions in Part 1 should be made into a library that will be linked to your C
program mem_test.c; they should NOT be additional functions defined in mem_test.c or, for that
matter, in any application program that uses the library. Moreover, the declaration, initial allocation,
and management of the personal memory pool should remain transparent to any application
program. It is as if the standard malloc and free calls are replaced by mem_alloc and mem_free.

Part 3: A sample application program

Write a program sort_merge.c that does the following. The program first initializes the personal
memory manager. It then creates two worker threads which read two files input1.txt and input2.txt
storing two unsorted lists of integers (with a few hundred entries each). Each thread creates a binary
search tree in the personal memory pool for storing the integers listed in the respective input file.
Each node in the BSTs should consist of a key field and two pointers (left and right). These pointers
are allocated space in the personal memory pool by invoking the mem_alloc() function.

When each thread has completely read its input file and stored all the keys read in its BST, it creates
an array, again in the personal memory pool. The allocation size of the array must be exactly equal
to that needed for storing all the keys in its BST. The thread then makes an in-order traversal of its
BST, and stores the sorted sequence of keys in its array. The BST is then freed by invoking the
mem_free() call node by node.

The threads terminate after creating two sorted arrays in the personal memory pool. After this, the
master thread merges the two sorted arrays (avoiding duplicates), and stores the merged list to a file
output.txt. The master thread finally frees the space allocated to the two sorted arrays, and exits.

Submit the following files in a tar-ball.
1. mem_mgmt.c (containing the source code for your library)
2. mem_mgmt.h (the header file to be included by application programs)
3. mem_test.c (application program for testing the functionality of your library)
4. sort_merge.c (application program for sorting and merging two files)
5. A makefile for compiling your library and the two application programs

