
CS39002: Operating Systems Lab
Spring 2012

Assignment 5
Due: March 09, 2012, 1 pm

Write a program that uses POSIX threads to perform a couple operations on Boolean matrices. All
shared data should be declared as global variables. Mutual exclusion and thread synchronization
must be achieved by pthread library calls only (mutexes and condition variables). You are not
allowed to use shared memory, semaphores or any other inter-process communication mechanism
(like pipes).

Part 1: Generating a Boolean matrix

The master thread creates an M × M Boolean matrix A with random entries. Each entry of the
matrix is zero or one with probability half. The matrix is to be stored in a global two-dimensional
array, and may be statically or dynamically allocated (your choice).

Part 2: Creating the worker threads

The master thread creates N worker threads among which the following Boolean matrix operations
will be equitably shared. Notice that the same threads will take part in all of the following
operations. That is, you must not create a fresh set of threads for each individual matrix operation or
in each iteration. The master thread must create all necessary resources (like mutexes and condition
variables to be used later) before the creation of any worker thread. The worker threads must be
joinable.

Part 3: Counting the number of ones in A

Each of the N worker threads computes the number of ones in an (M / N) × M submatrix, and adds
this count to a shared (that is, global) counter variable. The master thread initializes the counter to
zero before any worker thread accummulates its count in the counter. The updating of the counter
by the N threads must be mutually exclusive. After all the worker threads accummulate their
respective counts, the master thread prints the value of the counter.

Part 4: Computing the transitive closure of A

For two Boolean matrices U and V, define the product UV as the Boolean matrix W such that the
(i,j)-th entry of W is one if and only if there is a k for which the (i,k)-th entry of U and the (k,j)-th
entry of V are both one. This multiplication is not the standard modulo-two product of U and V.

The worker threads compute A, A2, A4, A8, ..., A2e
 for some e satisfying 2e ≥ m. In each squaring

step, the current matrix stored in A is multiplied with itself, and the result is temporarily stored in a
second global matrix B. Each of the N worker threads computes M / N rows of the product. After all
the worker threads complete their respective parts in the computation of B, they collectively copy
back the product stored in B to the matrix A. Each worker thread copies the portion of B computed
by it back to A.

Since the locations of A and B modified by the worker threads are disjoint from one another, no
mutual exclusion is necessary during squaring or copying back. However, the copying of B to A
must start after all computations involving the old A are over. Moreover, the next squaring step is
allowed to start only after the entire copy of B to A is over. Use condition variable(s) to synchronize
the worker threads.

After A2e
is computed (and stored in the global array A), the master thread prints the matrix A.

Part 5: Winding up

Each worker thread individually terminates at this point. The master thread waits for all the worker
threads to join. After that, the master thread cleans up thread resources, and exits.

Submit a single C source file with the name BoolMat.c. Take M = 1000 (dimension of the matrix
A) and N = 4 (number of worker threads) in your submission.

