
CS39002: Operating Systems Lab
Spring 2012

Assignment 1

Due: January 12, 2012, 1 pm

1. Write a C program that takes a file name as a command line parameter and sorts a
set of integers stored in the file (use any sorting method). You can assume that the
file will always be there in the current directory and that it will always contain a
set of integers (maximum no. of integers is 1000). The sorted output is written to
the display and the input file is left unchanged. Compile the C file into an
executable named "sort1". Name the C file sort1.c.

Now write a C program (xsort.c) that implements a command called "xsort" that
you will invoke from the shell prompt. The syntax of the command is "xsort
<filename>". When you type the command, the command opens a new xterm
window, and then sorts the integers stored in the file <filename> using the
program "sort1". Look up the man pages for xterm, fork and the different
variations of exec* calls (such as execv, execve, execlp etc.) to do this assignment.

Submit the C files sort1.c and xsort.c.

2. In this assignment we will start writing a command interpreter (Shell). We will
complete it in Assignment 2.

The shell will give a prompt for the user to type in a command (from a set of
commands), take the command, execute it, and then give the prompt back for the
next command (i.e., actually give the functionality of a shell). Your program for
the first assignment should do the following:

o Give a prompt "myshell>" for the user to type in a command
o Implement the following builtin commands:

 cd <dir> : changes the directory to "dir"
 pwd : prints the current directory
 mkdir <dir> : creates a directory called "dir"
 rmdir <dir> : removes the directory called "dir"
 ls : lists the files in the current directory. It should support both ls

without any option and with the option “-l”
 exit : exits the shell

The commands are the same as the corresponding Linux commands by the
same name. Do "man" to see the descriptions. You can use the standard
system calls chdir, getcwd, mkdir, rmdir, readdir etc. to implement the
calls (standard C library functions are available for these; look them up).

These commands are called builtin commands since your shell program
will have a function corresponding to each of these commands to execute

them; no new process will be created to execute them. (Note that all these
commands are not builtin commands in the bash shell, but we will make
them so in our shell).

o Any other command typed at the prompt should be executed as if it is the

name of an executable file. For example, typing "a.out" should execute the
file a.out. The file can be in the current directory or in any of the
directories specified by the PATH environment variable (use getenv to get
the value of PATH). The file should be executed after creating a new
process and then exec'ing the file onto it. The parent process should waits
for the file to finish execution and then go on to read the next command
from the user.

To run your shell, write another C program that will create a child process and
call an appropriate form of exec to run the program above from the linux shell.
The parent process simply waits for the child to finish (execute the "exit"
command), after which it also exits.

Name the C file for the shell shell.c. Name the C program above that runs your
shell run.c. Submit both the C files.

Please tar all the C files for both Problems 1 and 2 in a single tar file and follw
instructions on the submission site to submit.

