
CS39003 Compilers Laboratory, Autumn 2024–2025
Assignment No: 5
Date: 14-Oct-2024

__

Intermediate Code Generation

This assignment deals with a simulation of a computing environment to run a sequence of three-address instructions. We use the
same expression grammar as in Assignment 3. The grammar is reproduced below.

PROGRAM ⟶ STMT PROGRAM | STMT
STMT ⟶ SETSTMT | EXPRSTMT
SETSTMT ⟶ (set ID NUM) | (set ID ID) | (set ID EXPR)
EXPRSTMT ⟶ EXPR
EXPR ⟶ (OP ARG ARG)
OP ⟶ + | – | * | / | % | **
ARG ⟶ ID | NUM | EXPR

All operators are assumed to be binary and to work on signed integer operands, and ** is the exponentiation operator.

This time, you do not prepare any parse tree or expression tree. Instead, the parser will output a file intcode.c (should be a C
file) consisting of a sequence of three-address instructions. The main() function of intcode.c simulates the working of a
computer. It starts by declaring two arrays: R[] and MEM[]. R[] is capable of storing exactly 12 integers, and simulates the
registers available in the CPU. MEM[], on the other hand, is a model of the main memory, and is capable of storing a large
number (like 65536) of integers. The registers R[0] and R[1] are used for fetching memory-resident operands (and sometimes
for storing the results of arithmetic operations). The other registers R[2], R[3], . . . , R[11] are used to store the temporaries. If
more than ten temporaries are needed during some expression evaluation, then MEM[] is used to store them.

After the declarations of the two arrays, intcode.c stores the three-address instructions. Assume that our CPU cannot directly
work on a memory-resident operand, so such an operand must be first fetched to a register. Likewise, the result of an arithmetic
expression can only be stored in a register, and subsequently moved to memory if required. Consider the set statement:

(set c (+ a b))

Assuming that a, b, c reside at memory locations 5, 8, and 6 respectively, the 3-address code for the set statement can be:

R[0] = MEM[5];
R[1] = MEM[8];
R[2] = R[0] + R[1];
MEM[6] = R[2];

A standalone expression like

(* (+ a 6) (– 15 b))

can have intermediate code as follows.

R[0] = MEM[5];
R[2] = R[0] + 6;
R[0] = MEM[8];
R[3] = 15 – R[0];
R[2] = R[2] * R[3];

Exponentiation is not available as a basic operator in C/C++. Moreover, you need to check the correctness of your intermediate
code. For these, assume that we have the following three-address instructions.

pwr(arg1,arg2) Compute arg1 ^ arg2
mprn(MEM,idx) Print MEM[idx]
eprn(R,idx) Print R[idx]

Implement these functions in a C file aux.c, and #include this file from intcode.c.

Assume that each temporary is used only once. Therefore if some register stores a temporary, then that register can be reused
immediately after that temporary is used. This is illustrated in an earlier example:

R[2] = R[2] + R[3];

However, if all the registers R[2] through R[11] already store temporaries, and we need to store another temporary, then we
compute the new temporary in R[0], and move it to the next available MEM location.

R[0] = MEM[18];
R[0] = R[7] / R[0];
MEM[31] = R[0];

Later, when that temporary is to be used, that MEM entry is again fetched to R[0] or R[1] as illustrated below. Assume that at
that time R[9] is available to store a new temporary.

R[0] = MEM[25];
R[1] = MEM[31];
R[9] = R[0] – R[1];

After this, we may reuse MEM[31]. For simplicity, you do not have to do that because MEM[] is a large array. Note also that a
memory-resident temporary is not brought to a register as soon as some register is free to accommodate a new temporary. It is
fetched only when it is used. In the last example, we assumed that some register like R[9] was free. If not, R[0] will store the
result for sending to the next available memory location.

A sample input file and the corresponding intermediate-code file intcode.c are supplied at the end of this document. A larger
sample will be provided as an external file in the assignment website.

Files you should prepare

expr.l This is the lex file that is supposed to return the tokens from the input. In our example, the tokens are:

set (Keyword)
ID (Follow the same naming conventions as in C)
NUM (signed integers)
+ – * / % ** (Arithmetic operators)
() (Punctuation)

expr.y This is the yacc/bison file. Do not implement any function in this file.

Maintain a symbol table for the ID’s. For each ID, the symbol table will store the following two items.

The name of the variable (a string)
The offset of the variable in MEM[]

You do not store the value of the variables in the symbol table. Note that the symbol table does not exist
when the program intcode.c runs. So the output intermediate code cannot access variables by names.
The offsets of the variables in MEM[] are explicitly specified in the intermediate code. For example, in the
sample at the end of the document, the input file talks about the variables a, b, c, and so on. The
intermediate-code file talks about MEM[0], MEM[1], MEM[2], and so on.

In reality, variables of different types and widths are stored in the memory, and their offsets are usually
specified in bytes (or words). For simplicity, this assignment deals only with integer variables, and so MEM[]
is modeled as an int array. You may use the index in this array as the offset of a variable.

Note finally that you may need to store temporaries in the memory. You may adopt some special naming
convention for the temporaries like $1, $2, $3, . . . , so that these names do not clash with the names of
user-defined variables. The symbol table should store these special names for memory-resident temporaries.

intcodegen.c /
intcodegen.cpp

In this file, implement all functions needed for parsing. In particular, these functions will incrementally write
the three-address instructions to the output file intcode.c. The file intcodegen.c should have a main()
function. When it is compiled and run, the file intcode.c will be generated.

The register and memory arrays do not exist for the parsing code intcodegen.c(pp). These arrays exist in
the intermediate-code file intcode.c. The parsing code should only refer to indices in these arrays. The
actual data storage and movement in these arrays happen when intcode.c will run.

aux.c In this file, implement the three functions pwr(), mprn(), and eprn() as explained earlier.
sample.txt You may use the sample file at the end of this document. A larger sample file checking all the functionalities

can be downloaded from the assignment website.
makefile Write a makefile with the usual targets:

all Run yacc and flex, and compile intcodegen.c to an executable file icgen.
run Run icgen. This will generate intcode.c. Compile this to an executable file ic. Run ic.
clean Remove all files created by make all and make run (including intcode.c, icgen, and ic).

Pack the above six files in a zip/tar/tgz archive, and submit that single file.

A small sample

Input file sample.txt Parser output intcode.c Output of intcode.c
(set a 5)
(set b a)
(set c (+ (* a b) (+ a b)))
(+ (* a a)
 (** a b)
)
(set a 2)
(set b 9)
(/ (+ (** a 2) (** b 2))
 (+ (* a b) –1)
)
(set tmp b)
(set b (– (* 5 b) a))
(set a tmp)
(/ (+ (** a 2) (** b 2))
 (+ (* a b) –1)
)
(+
 4
 (+
 (*
 (+
 (*
 14
 (+ 6 (+ 12 (* 2 16)))
)
 9
)
 (*
 (+ (* 11 (+ 3 21)) (* 15 (* 8 13)))
 19
)
)
 (%
 (+
 (+ 1 (* 10 (+ 7 17)))
 20
)
 (* 5 18)
)
)
)

#include <stdio.h>
#include <stdlib.h>
#include "aux.c"

int main ()
{
 int R[12];
 int MEM[65536];

 MEM[0] = 5;
 mprn(MEM,0);
 R[0] = MEM[0];
 MEM[1] = R[0];
 mprn(MEM,1);
 R[0] = MEM[0];
 R[1] = MEM[1];
 R[2] = R[0] * R[1];
 R[0] = MEM[0];
 R[1] = MEM[1];
 R[3] = R[0] + R[1];
 R[2] = R[2] + R[3];
 MEM[2] = R[2];
 mprn(MEM,2);
 R[0] = MEM[0];
 R[1] = MEM[0];
 R[2] = R[0] * R[1];
 R[0] = MEM[0];
 R[1] = MEM[1];
 R[3] = pwr(R[0],R[1]);
 R[2] = R[2] + R[3];
 eprn(R,2);
 MEM[0] = 2;
 mprn(MEM,0);
 MEM[1] = 9;
 mprn(MEM,1);
 R[0] = MEM[0];
 R[2] = pwr(R[0],2);
 R[0] = MEM[1];
 R[3] = pwr(R[0],2);
 R[2] = R[2] + R[3];
 R[0] = MEM[0];
 R[1] = MEM[1];
 R[3] = R[0] * R[1];
 R[3] = R[3] + –1;
 R[2] = R[2] / R[3];
 eprn(R,2);
 R[0] = MEM[1];
 MEM[3] = R[0];
 mprn(MEM,3);
 R[0] = MEM[1];
 R[2] = 5 * R[0];
 R[0] = MEM[0];
 R[2] = R[2] – R[0];
 MEM[1] = R[2];
 mprn(MEM,1);
 R[0] = MEM[3];
 MEM[0] = R[0];
 mprn(MEM,0);
 R[0] = MEM[0];
 R[2] = pwr(R[0],2);
 R[0] = MEM[1];
 R[3] = pwr(R[0],2);
 R[2] = R[2] + R[3];

+++ MEM[0] set to 5
+++ MEM[1] set to 5
+++ MEM[2] set to 35
+++ Standalone expression evaluates to 3150
+++ MEM[0] set to 2
+++ MEM[1] set to 9
+++ Standalone expression evaluates to 5
+++ MEM[3] set to 9
+++ MEM[1] set to 43
+++ MEM[0] set to 9
+++ Standalone expression evaluates to 5
+++ Standalone expression evaluates to 24571189

 R[0] = MEM[0];
 R[1] = MEM[1];
 R[3] = R[0] * R[1];
 R[3] = R[3] + –1;
 R[2] = R[2] / R[3];
 eprn(R,2);
 R[2] = 2 * 16;
 R[2] = 12 + R[2];
 R[2] = 6 + R[2];
 R[2] = 14 * R[2];
 R[2] = R[2] + 9;
 R[3] = 3 + 21;
 R[3] = 11 * R[3];
 R[4] = 8 * 13;
 R[4] = 15 * R[4];
 R[3] = R[3] + R[4];
 R[3] = R[3] * 19;
 R[2] = R[2] * R[3];
 R[3] = 7 + 17;
 R[3] = 10 * R[3];
 R[3] = 1 + R[3];
 R[3] = R[3] + 20;
 R[4] = 5 * 18;
 R[3] = R[3] % R[4];
 R[2] = R[2] + R[3];
 R[2] = 4 + R[2];
 eprn(R,2);

 exit(0);
}

