
CS69001 Computing Laboratory – I

EVEN PC Lab Test 1 Date: 09–September–2019

In this exercise, you work with binary search trees (BSTs). Each of the trees stores the keys 1,2,3, . . . ,n.

Your task is to generate and work with all possible structurally different BSTs storing these keys. The

structure of the BST can be completely specified by the preorder listing of its keys. Therefore, if you can

generate all valid preorder listings of 1,2,3, . . . ,n, you can construct all the desired trees from these listings.

The following figure describes all structurally different BSTs storing the keys 1,2,3. The root pointers are

stored in an array L. The array should be sorted with respect to the preorder listings of the trees. Notice that

only the trees are to be stored, but not their preorder listings (shown below the trees for illustration only).

1

2

3

1

3

2

2

1 3

3

1

2

3

2

1

1, 2, 3 1, 3, 2 2, 1, 3 3, 1, 2 3, 2, 1

L

Part 1: The data types (4)

Define a data type to store a node in a BST. Each node should consist of an integer key, two child pointers

(left and right), and nothing else. You need to store a set of trees. Use an array L (not vector) to store the

pointers to the root nodes of the trees.

Part 2: Count of structurally different trees (4)

Let Cn denote the count of structurally different BSTs with n nodes. It can be proved that Cn is the n-th

Catalan number, and that the Catalan numbers can be defined as follows.

C0 = 1,

Cn = C0Cn−1 +C1Cn−2 +C2Cn−3 + · · ·+Cn−2C1 +Cn−1C0 for n > 1.

Write an efficient function treecount(n) to return the value of Cn for an integer input of n > 0. This count

will be used later on multiple occasions.

Part 3: Check for valid preorder listings (4)

Write a function ispreorder that takes as input an array A storing a permutation of 1,2,3, . . . ,n (no need

to check whether it is a permutation). The function should return true/false depending upon whether the

permutation stored in A is a valid preorder listing of the keys in a BST. Implement the following algorithm.

Since A purportedly stores the preorder listing of a BST, the first element (that is, A[0]) must be the key

stored at the root node. Call this key r. The array A can be decomposed as rALAR, where AL and AR are

the preorder listings of the left and right subtrees of the root. Notice that one or both of AL and AR may be

empty. Compute the maximum Lmax of AL, and the minimum Rmin of AR. If AL (resp. AR) is empty, take

Lmax =−∞ (resp. Rmin =+∞). For A to store a valid preorder listing, we must have Lmax < r < Rmin. Finally,

check recursively whether AL and AR are valid preorder listings of the two subtrees.

Part 4: Construct the tree from a valid preorder listing (8)

Write a function pre2BST that takes an input array A storing a permutation of 1,2,3, . . . ,n, which is a valid

preorder listing of the keys of a BST. The function should create the BST, of which the input permutation is

the preorder listing, and return a pointer to the root node of the tree created. Follow an algorithm similar to

— Page 1 of 2 —



that described in Part 3. Since pre2BST assumes that A stores a valid listing of the keys, you do not need to

check for the validity again. You should instead create the different nodes, and link them appropriately. For

example, the key r is to be stored in a new node allocated for the root. Its left and right child pointers are set

to the roots of the two subtrees constructed recursively on AL and AR.

Part 5: Generate all structurally different BSTs (8)

Write a function allBST to generate all permutations of 1,2, . . . ,n in the increasing order. For example, if

n = 3, the permutations should be generated in the order [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1].
After each permutation is generated, check whether this is a valid preorder listing (using ispreorder of

Part 3). If so, create the BST with this listing (use pre2BST of Part 4), and append the pointer to the root of

the tree to the array L. Otherwise, discard this permutation. This function should print how many trees it

creates. This count should match Cn as computed in Part 2.

Part 6: Printing the trees (2)

Write a function preorder to print the preorder listing of the keys of a BST T .

Part 7: Binary search in the array of trees (8)

Write a function binsearch that, given the array L (of size Cn) and an array A (of size n) storing a permutation

of 1,2,3, . . . ,n, finds out whether A is the preorder listing of a tree in L. Since L is sorted with respect to

the preorder listing of the trees, a binary search suffices. For comparing A with the preorder listing of a tree

T = L[i], store the preorder listing of T in an array B, and compare A and B element by element.

Part 8: The main() function (4)

The user enters an integer n ∈ {3,4,5, . . . ,10}. Call treecount (Part 1) to get the value of Cn. Print the

count. Call allBST (Part 5) to create Cn BSTs and store their root pointers in L. For each tree T = L[i],
i = 0,1,2, . . . ,Cn − 1, print the preorder listing of the keys stored in T . Keep on generating random

permutations of 1,2,3, . . . ,n until one is found which is a valid preorder listing. Likewise, keep on generating

random permutations of 1,2,3, . . . ,n until one is found which is not a valid preorder listing. Check the

validity (or otherwise) of each permutation by calling binsearch. Print the two permutations obtained as

above. Notice that the user does not enter these permutations as inputs.

Output (8)

n = 4

+++ Count of BSTs = 14 [1 mark for correct count]

+++ 14 trees created [1 mark for correct count]

+++ The preorder listings of the BSTs [4 marks]

BST # 1 : 1 2 3 4

BST # 2 : 1 2 4 3

BST # 3 : 1 3 2 4

BST # 4 : 1 4 2 3

BST # 5 : 1 4 3 2

BST # 6 : 2 1 3 4

BST # 7 : 2 1 4 3

BST # 8 : 3 1 2 4

BST # 9 : 3 2 1 4

BST # 10 : 4 1 2 3

BST # 11 : 4 1 3 2

BST # 12 : 4 2 1 3

BST # 13 : 4 3 1 2

BST # 14 : 4 3 2 1

+++ Search : 4 1 2 3 : Tree # 10 matches [1 mark]

+++ Search : 1 3 4 2 : Tree not found [1 mark]

Submit one C/C++ file. Do not use STL data structures. Write your name, roll no, and PC no as a comment.

— Page 2 of 2 —



CS69001 Computing Laboratory – I

ODD PC Lab Test 1 Date: 09–September–2019

In this exercise, you work with binary search trees (BSTs). Each of the trees stores the keys 1,2,3, . . . ,n.

Your task is to generate and work with all possible structurally different BSTs storing these keys. The

structure of the BST can be completely specified by the postorder listing of its keys. Therefore, if you can

generate all valid postorder listings of 1,2,3, . . . ,n, you can construct all the desired trees from these listings.

The following figure describes all structurally different BSTs storing the keys 1,2,3. The root pointers are

stored in an array L. The array should be sorted with respect to the postorder listings of the trees. Notice that

only the trees are to be stored, but not their postorder listings (shown below the trees for illustration only).

3

1

2

2, 1, 3

2

1 3

1, 3, 2

3

2

1

1, 2, 3

1

3

2

2, 3, 1

1

2

3

3, 2, 1

L

Part 1: The data types (4)

Define a data type to store a node in a BST. Each node should consist of an integer key, two child pointers

(left and right), and nothing else. You need to store a set of trees. Use an array L (not vector) to store the

pointers to the root nodes of the trees.

Part 2: Count of structurally different trees (4)

Let Cn denote the count of structurally different BSTs with n nodes. It can be proved that Cn is the n-th

Catalan number, and that the Catalan numbers can be defined as follows.

C0 = 1,

Cn = C0Cn−1 +C1Cn−2 +C2Cn−3 + · · ·+Cn−2C1 +Cn−1C0 for n > 1.

Write an efficient function treecount(n) to return the value of Cn for an integer input of n > 0. This count

will be used later on multiple occasions.

Part 3: Check for valid postorder listings (4)

Write a function ispostorder that takes as input an array A storing a permutation of 1,2,3, . . . ,n (no need

to check whether it is a permutation). The function should return true/false depending upon whether the

permutation stored in A is a valid postorder listing of the keys in a BST. Implement the following algorithm.

Since A purportedly stores the postorder listing of a BST, the last element (that is, A[n− 1]) must be the

key stored at the root node. Call this key r. The array A can be decomposed as ALARr, where AL and AR

are the postorder listings of the left and right subtrees of the root. Notice that one or both of AL and AR

may be empty. Compute the maximum Lmax of AL, and the minimum Rmin of AR. If AL (resp. AR) is empty,

take Lmax =−∞ (resp. Rmin =+∞). For A to store a valid postorder listing, we must have Lmax < r < Rmin.

Finally, check recursively whether AL and AR are valid postorder listings of the two subtrees.

Part 4: Construct the tree from a valid postorder listing (8)

Write a function post2BST that takes an input array A storing a permutation of 1,2,3, . . . ,n, which is a valid

postorder listing of the keys of a BST. The function should create the BST, of which the input permutation

is the postorder listing, and return a pointer to the root node of the tree created. Follow an algorithm similar

— Page 1 of 2 —



to that described in Part 3. Since post2BST assumes that A stores a valid listing of the keys, you do not need

to check for the validity again. You should instead create the different nodes, and link them appropriately.

For example, the key r is to be stored in a new node allocated for the root. Its left and right child pointers

are set to the roots of the two subtrees constructed recursively on AL and AR.

Part 5: Generate all structurally different BSTs (8)

Write a function allBST to generate all permutations of 1,2, . . . ,n in the increasing order. For example, if

n = 3, the permutations should be generated in the order [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1].
After each permutation is generated, check whether this is a valid postorder listing (using ispostorder of

Part 3). If so, create the BST with this listing (use post2BST of Part 4), and append the pointer to the root

of the tree to the array L. Otherwise, discard this permutation. This function should print how many trees it

creates. This count should match Cn as computed in Part 2.

Part 6: Printing the trees (2)

Write a function postorder to print the postorder listing of the keys of a BST T .

Part 7: Binary search in the array of trees (8)

Write a function binsearch that, given the array L (of size Cn) and an array A (of size n) storing a permutation

of 1,2,3, . . . ,n, finds out whether A is the postorder listing of a tree in L. Since L is sorted with respect to

the postorder listing of the trees, a binary search suffices. For comparing A with the postorder listing of a

tree T = L[i], store the postorder listing of T in an array B, and compare A and B element by element.

Part 8: The main() function (4)

The user enters an integer n ∈ {3,4,5, . . . ,10}. Call treecount (Part 1) to get the value of Cn. Print the

count. Call allBST (Part 5) to create Cn BSTs and store their root pointers in L. For each tree T = L[i],
i = 0,1,2, . . . ,Cn − 1, print the postorder listing of the keys stored in T . Keep on generating random

permutations of 1,2,3, . . . ,n until one is found which is a valid postorder listing. Likewise, keep on

generating random permutations of 1,2,3, . . . ,n until one is found which is not a valid postorder listing.

Check the validity (or otherwise) of each permutation by calling binsearch. Print the two permutations

obtained as above. Notice that the user does not enter these permutations as inputs.

Output (8)

n = 4

+++ Count of BSTs = 14 [1 mark for correct count]

+++ 14 trees created [1 mark for correct count]

+++ The postorder listings of the BSTs [4 marks]

BST # 1 : 1 2 3 4

BST # 2 : 1 2 4 3

BST # 3 : 1 3 2 4

BST # 4 : 1 3 4 2

BST # 5 : 1 4 3 2

BST # 6 : 2 1 3 4

BST # 7 : 2 1 4 3

BST # 8 : 2 3 1 4

BST # 9 : 2 3 4 1

BST # 10 : 2 4 3 1

BST # 11 : 3 2 1 4

BST # 12 : 3 2 4 1

BST # 13 : 3 4 2 1

BST # 14 : 4 3 2 1

+++ Search : 2 3 1 4 : Tree # 8 matches [1 mark]

+++ Search : 3 1 2 4 : Tree not found [1 mark]

Submit one C/C++ file. Do not use STL data structures. Write your name, roll no, and PC no as a comment.

— Page 2 of 2 —


