
CS69001 Computing Laboratory – I

Assignment No: D1

Date: 28–August–2019

Computational (usually optimization) problems are sometimes formulated as linear-programming (LP)

problems. In many situations, the LP instances lead to near-optimal solutions of the original problem.

Even when the problem is known to be difficult (like NP-complete), the resulting approximation algorithms

are often of good quality. In this assignment, you use the GNU Linear Programming Kit (GLPK) API in

order to solve the traveling salesperson problem (TSP) sub-optimally and also optimally.

There are n sites (sometimes referred to as cities) in the two-dimensional plane. These sites are provided by

their x and y coordinates. The distance between two sites at (x,y) and (x′,y′) is the usual Euclidean distance
√

(x− x′)2 +(y− y′)2. The salesperson starts from one site (like the first one), visits each site once and only

once, and eventually comes back to the site from where the tour began. The objective is to minimize the

total distance covered by the salesperson.

The input graph of n sites (vertices) is a complete undirected graph with the edges carrying the inter-site

distances as costs. The problem is to find a Hamiltonian cycle in this graph, which has the least cost. The

number of such cycles is (n−1)! which is exponential in n. Consequently, an exhaustive search is too slow

for all practical purposes. We are happy if we obtain near-optimal solutions.

Part 1

Get yourself introduced to the GLPK API. This is installed in the lab machines. If you want to install it in

your personal machine (like laptop), you need to download the package from the standard repositories. For

Ubuntu, this can be done as follows.

$ sudo apt install glpk-utils libglpk-dev glpk-doc

Read the user’s manual linked from the lab website. Include the following directive in your program.

#include <glpk.h>

Compile your code with the following flags.

gcc -Wall mytsp.c -lglpk -lm

GLPK supports both real-valued linear programming and mixed-integer optimization. The basic API calls

are glp_simplex and glp_intopt. The integer optimizer needs an initial solution. You can start with the

output of the simplex solver.

Part 2

In this part, you compute a sub-optimal solution of the TSP. The formulation of the problem is presented

first. We number the sites as 1,2,3, . . . ,n. For i, j in this range, define a Boolean variable xi j with the

meaning that if the salesperson’s tour visits Site j immediately after Site i, then xi j = 1. Otherwise, xi j = 0.

The objective function to be minimized is

n

∑
i=1

n

∑
j=1

di jxi j,

where di j is the distance (assumed symmetric) between Site i and Site j. Since the salesperson enters and

leaves each site only once, we have the following sets of constrains.

n

∑
i=1

xi j = 1 for all j = 1,2,3, . . . ,n. [Entering constraints]

n

∑
j=1

xi j = 1 for all i = 1,2,3, . . . ,n. [Leaving constraints]

— Page 1 of 3 —



Unfortunately, these constraints alone cannot specify Hamiltonian cycles fully. Collections of node-disjoint

cycles also qualify as feasible solutions. Even 2-cycles like i → j → i can be included. Add the constraints

xi j + x j i 6 1 [No 2-cycle constraints]

for all i, j ∈ {1,2,3, . . . ,n}, i 6= j, to avoid the 2-cycles. Likewise, 3-cycles, 4-cycles, 5-cycles, . . . can be

eliminated by adding more constraints, but the number of constraints will grow exponentially in n.

Solve the LP with only the entering, leaving, and no 2-cycle constraints. If the solution is a Hamiltonian

cycle, we are done. Otherwise, you have a collection of node-disjoint cycles. Identify all these cycles. We

need to stitch the different cycles together again by solving LP instances. If i1 → i2 → . . .→ il → i1 is such

a cycle of length l, add the new constraint

xi1i2 + xi2i3 + · · ·+ xil−1il + xil i1 = l −1 [Cycle-breaking constraints]

in order to forcibly remove one edge from the cycle. When all the cycles of the current solution are so

handled, re-solve the LP with these additional constraints. It will produce the desired stitching effect, but

may still give a solution with multiple cycles (longer than those from the previous attempt though).

Repeat until you get a solution with only one cycle. This solution is not guaranteed to be optimal, but is

expected to be close to optimal. Most importantly, this method runs quite fast, despite multiple invocations

of the LP solver. This method can handle, in feasible time, instances with n as large as 100.

Write a function tspsolve1 to implement this algorithm.

Part 3

In this part, you write a function tspsolve2 which produces an optimal solution. On the flip side, this

algorithm is noticeably slower than the method of Part 2. Indeed, it is very problematic with this method to

handle n somewhat larger than 20.

We again start with the entering and leaving constraints of Part 2, but we do not include the no 2-cycle

constraints xi j + x j i 6 1. Instead we preclude solutions with multiple cycles by introducing n integer-

valued variables u1,u2,u3, . . . ,un ∈ {1,2,3, . . . ,n}, where ui stands for the serial number of visiting Site i.

We assume that the salesperson’s tour starts from Site 1, so u1 = 1. Later, if xi j = 1 (that is, Site j is

visited immediately after Site i), we have u j = ui +1, This implies that u2,u3,u4, . . . ,un is a permutation of

2,3,4, . . . ,n. Since u1 = 1 always, we may choose not to introduce this variable.

These new variables are now connected with the earlier variables by the constraints

ui −u j +nxi j 6 n−1 for all i, j ∈ {2,3,4, . . . ,n}, i 6= j. [Hamiltonian-cycle constraints]

These constraints ensure that there cannot be a solution with multiple cycles. If such a solution is feasible,

there is a cycle not containing Site 1. Let l be the length of this cycle. Adding the constraints over the

edges of this cycle gives nl 6 (n− 1)l because the u variables cancel each other. This implies n 6 n− 1,

a contradiction. Conversely, we show that these constraints permit Hamiltonian cycles. If xi j = 1, we have

u j = ui +1, so ui −u j +nxi j = n−1. If xi j = 0, then ui −u j +nxi j = ui −u j is evidently 6 n−1.

Solve the LP instance consisting of the entering, leaving and Hamiltonian-cycle constraints. The objective

function remains the same, and depends only on the variables xi j.

The main() function

• The reader supplies n (the number of sites), and the coordinate pairs of the n sites.

• Call tspsolve1. Report the iterative refining of the solutions in the multiple LP instances.

• Call tspsolve2, and report the solution obtained.

Submit a single C/C++ source file. Do not use global/static variables.

— Page 2 of 3 —



Sample output

n = 16

0.3720751099158428 0.8854997478823642

0.4418202128456069 0.6563730121852704

0.3281098629013215 0.8965254909808400

0.5462351159873582 0.6615548001888929

0.5338516042259762 0.7480234912354609

0.3681871799603976 0.8455706624526393

0.2843932724950804 0.9162659924087422

0.7432693106789464 0.0859196135243027

0.6055622690383169 0.0693114879863856

0.1667971541950466 0.6799476238339895

0.2285322212746982 0.5114901072864840

0.4067291055837316 0.2238342302031043

0.2574509313597581 0.3256484103974180

0.8716194615101532 0.0972275515539700

0.0743328654553429 0.7439751414321247

0.5152220761008663 0.4464079753711857

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++ Solving TSP by Method 1

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++ Attempt No 1

+++ Minimum simplex cost = 2.3837046899265752

+++ Minimum mip cost = 2.3837046899265752

1 -> 3 -> 7 -> 6 -> 1

2 -> 4 -> 5 -> 2

8 -> 9 -> 14 -> 8

10 -> 11 -> 15 -> 10

12 -> 13 -> 16 -> 12

Solution of Attempt 1 has 5 cycles

+++ Attempt No 2

+++ Minimum simplex cost = 2.3837046899265752

+++ Minimum mip cost = 2.8226231520429894

1 -> 3 -> 7 -> 15 -> 10 -> 11 -> 2 -> 4 -> 5 -> 6 -> 1

8 -> 9 -> 12 -> 13 -> 16 -> 14 -> 8

Solution of Attempt 2 has 2 cycles

+++ Attempt No 3

+++ Minimum simplex cost = 2.6370442856125105

+++ Minimum mip cost = 2.9527525149127167

1 -> 3 -> 7 -> 15 -> 10 -> 11 -> 16 -> 14 -> 8 -> 9 -> 12 -> 13 -> 2 -> 4 -> 5 -> 6 -> 1

Solution of Attempt 3 has 1 cycles

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++ Solving TSP by Method 2

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++ Minimum simplex cost = 2.1543997685660052

+++ Minimum mip cost = 2.6906287309383856

1 -> 6 -> 5 -> 4 -> 2 -> 16 -> 14 -> 8 -> 9 -> 12 -> 13 -> 11 -> 10 -> 15 -> 7 -> 3 -> 1

Solution has 1 cycles

— Page 3 of 3 —


