
CS69001 Computing Laboratory – I

Assignment No: C3

Date: 28–October–2019

Let G = (V,E) be an undirected graph with N vertices. We number the vertices as V = {0,1,2, . . . ,N −1}.

We want to do a breadth-first (BFS) traversal starting from Vertex 0. A standard implementation of BFS is

given below. A visited array of size N, and a queue Q of vertices are used. Since Q may contain at most N

vertices, we use an array of size N to store Q.

1. Set Q[0] = 0 and F = B = 0.

2. Set visited[0] = 1 and visited[i] = 0 for i = 1,2, . . . ,N −1.

3. While (F 6 B) /* Q is not empty */, repeat:

(a) Dequeue: Set u = Q[F ], and increment F .

(b) For all vertices v such that (u,v) ∈ E and visited[v] = 0, repeat:

i. Enqueue: Increment B, and set Q[B] = v.

ii. Mark visited[v] = 1.

In this assignment, you write a multi-process program for implementing this BFS-traversal algorithm. For

simplicity, assume that the edge information is provided in the form of the N ×N adjacency matrix. This

matrix (along with its dimension N) resides in the shared memory. Moreover, the visited array, the queue

Q, and the two queue end indices F and B are shared by the processes, and should also reside in the shared

memory. Some additional information needed for synchronization and communication are to be stored in

the shared memory. This includes (i) the number p of child processes involved in the traversal, (ii) a variable

called ndone, and (iii) a chunk-definition array C of size p×2. Each individual item in these data types can

be taken as an integer, so the shared memory may be attached as an int pointer.

A total of p+ 1 processes are to be involved. The process you launch by running your code is called the

parent process. It spawns p child processes which actually perform the BFS traversal. The parent process is

needed to properly synchronize the child processes.

Part 1: Initialize the BFS traversal

The parent process creates a shared-memory segment M for storing all the shared data explained above. You

may assume N = 1000 and p = 4 throughout this assignment. The parent process initializes the adjacency

matrix to store a random graph G. Each edge (u,v) is present in G with probability 0.005. After this graph

generation, the parent process prints the graph (see sample output for the printing format). Finally, the parent

process initiates the BFS traversal by performing Steps 1 and 2 of the BFS algorithm.

The parent process also creates four semaphore arrays. These arrays with their semaphore counts and initial

values are listed below.

Semaphore-array name Number of semaphores Initial value(s)

SLS (the level-start semaphore) 1 0

SLE (the level-end semaphore) 1 0

SQ (semaphore for mutual exclusion of the queue Q) 1 1

SV (semaphores for mutual exclusion of the visited array) p2 1 (each)

Part 2: Creating the child processes

After completing the initial book-keeping task, the parent process spawns p child processes. These child

processes perform Step 3 of the BFS algorithm in parallel. The parent process stays alive for coordinating

the work of the p child processes. When all p child processes exit, the parent process removes the shared-

memory segment M and all semaphore arrays created by it, and exits itself.

— Page 1 of 2 —



Part 3: Synchronizing the levels

The BFS traversal should proceed level by level. The parent process initializes the level 0 (the root of the

BFS tree). The p child processes then explore the other levels until no further level can be added to the BFS

tree. The processing of no level may start before the previous level completes.

In order to see why this synchronization is necessary, suppose that the child processes are working at level l

of the BFS tree. Let two different child processes Q and Q′ be in charge of two vertices u and u′ at level l.

Suppose also that u has an unvisited neighbor v, and u′ has an unvisited neighbor v′, and (v,v′) is an edge

in E. Q enqueues v at level l + 1, but before Q′ gets a chance to enqueue v′ at level l + 1, Q finds v′ as an

unvisited neighbor v′ of v. Q would then add v′ at level l +2. This is wrong.

The level-wise synchronization is achieved as follows. Each child process waits on the level-start semaphore

SLS. The parent process finds the current Q segment [F,B]. It breaks the segment into p (almost) equal-sized

chunks, and writes the start and the end indices of the p chunks in the chunk array C in the shared memory.

After this, the parent process wakes up all the child processes by making p signal calls to SLS. The parent

then waits on the level-end semaphore SLE . Before the parent goes to wait, the count ndone should be zero.

Each child process, after waking up, processes its chunk of the queue (see the next two parts). When a child

process is done with its chunk, it increments ndone, and goes to wait on SLS for starting the next level. The

last process to finish its chunk at the current level sees p as the incremented value of ndone. Before it goes

to wait on SLS, it wakes up the parent process by signaling the semaphore SLE . Before the next level begins,

ndone should be reset to 0 either by the parent process or by the last child process to finish the current level.

Part 4: Mutual exclusion of the queue Q

Each child process, while processing its chunk at the current level, discovers the new unvisited neighbors

from the vertices of its chunk. The child process accumulates these BFS-tree links in a private array. When

all vertices in the chunk are explored, this private information is copied to the shared array Q. Enqueuing

involves incrementing the index B and writing a vertex number at Q[B]. Two different child processes must

not be allowed to enqueue at the same time. The semaphore SQ should be used for mutually exclusive access

of Q by the different child processes. That is, a child process acquiring the lock on Q should be allowed to

finish writing its entire private data to Q before another child process can start its own copying process.

Part 5: Mutual exclusion of the visited array

When an unvisited neighbor v of a vertex u is located by some child process (at some level), that process

marks (u,v) as a link of the BFS tree, so that no other child process can discover v again as an unvisited

neighbor. This is done by setting visited[v] = 1 in the shared memory. This may lead to a race condition.

If the entire visited array is guarded by a single semaphore, no parallel access of this array is possible. If

two child processes want to access two different locations in this array, this does not lead to a race condition.

However, if we create N semaphores for guarding individual entries of the visited array, the number of

semaphores will be huge (like N = 1000). A practical trade-off between these two extreme situations can be

achieved as follows.

The entire visited array is guarded by p2 semaphores in SV . The entry at index i is guarded by the j-th

semaphore in the semaphore array SV , where j = i rem p2. At any point of time, there can be at most p

concurrent accesses of visited array entries. There are p2 locks in total. Assuming that the access patterns

(indices) are random, the probability that there is a collision (contention on the same lock) is less than 1/2,

by the birthday paradox. As a result, most of the accesses can proceed in parallel without any race condition.

Sample output: A verbose sample output file is separately linked from the lab website.

Submit a single C/C++ source file. Do not use global/static variables.

Do not use STL queues or vectors. The shared arrays visited and Q are to be managed by you.

— Page 2 of 2 —


