
CS69001 Computing Laboratory – I

Assignment No: C1

Date: 30–September–2019

In this assignment, you prepare and work with a process tree T . Each process P in the tree T is given a

user-specified key which is a positive integer. With respect to these keys, T should be a binary search tree

(BST). The root process is denoted by R. This (and only this) process has access to a file which stores the

sequence of the user-specified keys (with possible duplicates) delimited by the invalid key −1. The file

specifies the sequence of inserting the keys in the BST. The terminating key −1 is needed because the file

does not store how many keys are contained in the file. The sample output shows an input file with 25 keys

(of which three are duplicates).

Communication is possible between a process P and its two child processes PL and PR. A pipe is opened by

P for communication with PL if it exists. Likewise, another pipe is opened for communication with PR if it

exists. If P does not have a left/right child, the corresponding pipe is not opened. Just before P forks a new

child, the corresponding pipe is opened. P itself needs to communicate with its parent Q (unless P is the

root). This communication is to be made using the appropriate pipe (left or right depending upon whether P

is the left child or the right child of Q) created by Q just before it forked P. All pipes are bidirectional (that

is, no end is closed by any process), because you need to communicate both down and up the tree.

Each process should maintain the following data in this assignment. You may have other process-specific

data, but the following items must be maintained.

• The user-specified key (a positive integer).

• The PID of the left-child process (UNDEFINED if this child does not exist).

• The PID of the right-child process (UNDEFINED if this child does not exist).

• The PID of the parent process (UNDEFINED if the process is the root R).

• A pipe to talk with the left child (not opened until this child is forked).

• A pipe to talk with the right child (not opened until this child is forked).

• A pipe to talk with the parent (created by the parent, UNDEFINED for R).

Immediately after a process P is created (the root R is created when you run your code), its key and its

child PIDs are set to UNDEFINED. The root R always keeps its parent UNDEFINED, but any other process

sets its parent PID by calling getppid. This convention lets the root process identify itself uniquely as is

needed on several occasions later. The left- and right-child pipes are not opened immediately after P is born.

However, if P is not the root R, its parent pipe is set from the data passed by its creator.

The adjacent figure illustrates a process

tree T . This is just a BST, but the nodes

of T are processes, and each parent-child

link is essentially a pipe. The figure also

demonstrates the insertion of a new key to

the process tree. The communication path

is shown by the lines with arrows.

144

89

55

34

3

212

8

5 13

Part 1: Read data from the input file

The root process R reads data from the input file. However, it plans to read using scanf instead of fscanf.

It opens the input file using fopen, gets the file descriptor using fileno, and redirects its stdin to this

descriptor (use close and dup). All reading of data (keys) by R is done in Part 2. Write a function initroot

that only sets up this redirection for future use.

— Page 1 of 4 —

Part 2: Build the process tree

Write a function buildproctree that builds the process tree (a BST with respect to the key values read from

the input file). The root reads the keys sequentially from the redirected stdin. If it can accommodate

this key (this happens only when the first key is read), it sets its key to this value, and does nothing else.

Otherwise (that is, if the key of the root is already set), it passes the key to its appropriate child (left or right)

depending upon whether the new key is smaller or larger than the key at the root. If that child does not exist,

it is forked, and then the new key is passed to that child.

All processes perform essentially the same task. A non-root process P reads a new key from its parent pipe

(only the root reads using scanf). If the key of P is undefined, it sets its key to the new key, and does

nothing else. Otherwise, it compares its key with the new key, and based upon the comparison result, it

passes the key to its appropriate child, after forking it if the child did not exist.

When a duplicate key appears in the input file, it eventually reaches a process whose old key is already set

to this new key read from the file. When this happens, the key is discarded, and the insertion process stops

for this new key. For synchronization (see Part 5), it may be a good idea that each process remembers how

many keys it discards. This can be an additional item maintained by each process.

Eventually, the root process reads the terminating key −1. It broadcasts this key to the entire tree as follows.

When a process gets the new key −1 (the root gets it from stdin, and any other node from its parent pipe),

it forwards it to its children whichever exist(s). After this forwarding, buildproctree returns (to main).

Part 3: Compute the heights of the nodes in the process tree

Each process P in the tree invokes a function calcheight. It initializes hL = hR =−1 (the heights of the two

subtrees). If the left child of P exists, P waits until this child writes its height to its parent pipe, and obtains

the exact value of hL. Likewise, a communication gives the exact value of hR to P provided that the right

child of P exists. P then calculates h = 1+max(hL,hR). If P has a parent (that is, P 6= R), P writes h to

its parent pipe. Finally, the function calcheight returns h. The return value of calcheight called by P is the

height of the subtree rooted at P. If P is the root R, this return value is the height of the entire tree T .

Part 4: Inorder listing of the keys in the process tree

This is the last task to be done by all the processes. Write a function inorder that works as follows. If a

process P has a left child, it waits until that child exits. Each process remembers the PIDs of its two child

processes (if they exist). Use waitpid (not wait) because P wants the left child to exit first. Then, P prints

(and flushes) its key. Now, P waits for the termination of its right child if it exists. Finally, P itself exits.

Part 5: Synchronization among the processes

Part 4 achieves synchronization using waitpid calls. This is acceptable because the inorder printing of the

keys is the last task the processes do before they exit. But we need Part 2 to finish before Part 3, and Part 3

to finish before Part 4, in all the running processes. This cannot be achieved using waitpid calls.

Why is this synchronization is necessary? In Part 2, communication happens down the tree (from parent to

children), whereas in Part 3, communication happens up the tree (from children to parent). Take a process

P with parent Q. Suppose that Q in buildproctree has written some keys for P in the pipe shared between

P and Q. Because of the order of scheduling of the processes (over which you do not have any control, it

is an OS job), Q returns from buildproctree earlier than P gets a chance to read all the keys (including the

final terminating key −1) sent by Q. If Q is allowed to run calcheight at this point, it will try to read the

height of Q from the pipe between P and Q. But the pipe still contains keys not read by P, and is thus not

empty. So Q mistakenly reads a key from the pipe, and treats this as the height of P. More frustratingly, if

Q reads the terminating key −1 from the pipe, P never gets a chance to return from buildproctree. One way

to avoid this problem is to use two sets of pipes, one set for downward communication, and the other for

upward communication. This requires p−1 extra pipes, where p is the number of processes in the tree. We

will soon see that this problem can be avoided by only two pipes shared by all the processes.

Likewise, the printing of the inorder listing of the keys in Part 4 must be initiated strictly after the printing

of the heights of all the nodes of T (Part 3), for otherwise the printing may be garbled.

— Page 2 of 4 —

There are many ways of synchronizing processes. One possibility is that each process sleeps for some time

(like one second) after returning from buildproctree, and again for some time after returning from calcheight.

This idle wait gives each part to finish in all the processes before the next part starts. It is however an ugly

solution, because an idle wait unnecessarily keeps processes alive longer than they should be. Moreover, in

practice, you do not usually know in advance how much wait is sufficient in each synchronization step. A

long sleep slows down the program, whereas a short sleep defeats the synchronization objective.

Implement a pipe-based sleepless synchronization mechanism between consecutive parts. The mechanism

works because read from a pipe is a blocking call which waits until sufficient data is available in the pipe.

The processes use two pipes p and q to this end. These pipes are different from the communication pipes

between parent and child processes. Every process shares the knowledge of these two pipes. One particular

process, preferably the root process R, plays the role of the coordinator.

Let there be n (valid) keys read by R from the file (the root should accumulate and remember this count). Let

nd(P) denote the number of discarded keys at a node P (this has different values at different nodes). The root

R, after returning from buildproctree, waits for reading a total of n−nd(R)−1 bytes of data from the pipe p.

Each non-root process P, after returning from buildproctree, writes 1+nd(P) bytes to p. After all non-root

processes finish writing to p, the wait of R is over, and the root is synchronized with the other processes.

But the objective of synchronizing all the processes together is not yet achieved, because non-root processes

write to p, which is a non-blocking call.

After each non-root process P writes to p, it then blocks over a read of 1+ nd(P) bytes of data from the

other pipe q. When the root is done with the reading from p, it writes n−nd(R)−1 bytes of data to q. This

eventually releases the other processes from the blocking read on q. All the processes may now proceed

(in whatever order) to the function calcheight. Notice that the exact data written to or read from p or q is

irrelevant. It is the blocking waits that matter.

For the second synchronization (between calcheight and inorder), use a different pair p ′
,q ′ of pipes (why?).

Write a function synchronize to be called by all the processes during each synchronization step. Pass p,q in

the first step, and p ′
,q ′ in the second.

The main() function

• When you run your code, only one process (the root R) is created. After initial book-keeping, it

redirects its stdin by calling initroot.

• Then, call buildproctree. This is called by only one process, the root R. Inside the function, multiple

processes are created, and these new processes keep on executing the same loop as the root. The

task of each process is the same in this loop. Only the root reads from redirected stdin, whereas all

non-root processes read from their respective parent pipes. A process can decide whether it is the root

by looking at its parent (UNDEFINED for root, system-given PIDs for others).

• Call synchronize with pipes p,q after buildproctree returns.

• Call calcheight. Each process prints the return value.

• Call synchronize with pipes p ′
,q ′ after calcheight returns.

• Call inorder. This is done by all processes. Each process terminates in this function.

Read the man-pages of the following calls: fileno, getpid, getppid, sprintf, sscanf, fflush,

sleep, usleep.

Submit a single C/C++ source file. Do not use global/static variables.

— Page 3 of 4 —

Sample output

The input file is given first.

23 90 4 28 7 23 17 64 48 22 15 69 29 73 43 35

83 39 83 23 11 42 70 20 31

-1

The output of the program on this input file follows.

+++ Building process tree

Process 8578 with parent -1 gets key = 23 [New, assigned]

Process 8578 with parent -1 gets key = 23 [Old, discarded]

Process 8578 with parent -1 gets key = 23 [Old, discarded]

Process 8579 with parent 8578 gets key = 90 [New, assigned]

Process 8580 with parent 8578 gets key = 4 [New, assigned]

Process 8581 with parent 8579 gets key = 28 [New, assigned]

Process 8582 with parent 8580 gets key = 7 [New, assigned]

Process 8583 with parent 8581 gets key = 64 [New, assigned]

Process 8584 with parent 8582 gets key = 17 [New, assigned]

Process 8585 with parent 8583 gets key = 48 [New, assigned]

Process 8586 with parent 8584 gets key = 22 [New, assigned]

Process 8588 with parent 8584 gets key = 15 [New, assigned]

Process 8587 with parent 8583 gets key = 69 [New, assigned]

Process 8589 with parent 8585 gets key = 29 [New, assigned]

Process 8590 with parent 8586 gets key = 20 [New, assigned]

Process 8591 with parent 8588 gets key = 11 [New, assigned]

Process 8593 with parent 8589 gets key = 43 [New, assigned]

Process 8592 with parent 8587 gets key = 73 [New, assigned]

Process 8594 with parent 8593 gets key = 35 [New, assigned]

Process 8595 with parent 8592 gets key = 83 [New, assigned]

Process 8595 with parent 8592 gets key = 83 [Old, discarded]

Process 8596 with parent 8592 gets key = 70 [New, assigned]

Process 8597 with parent 8594 gets key = 39 [New, assigned]

Process 8598 with parent 8594 gets key = 31 [New, assigned]

Process 8599 with parent 8597 gets key = 42 [New, assigned]

Height of the process 8599 with key 42 is 0

Height of the process 8597 with key 39 is 1

Height of the process 8590 with key 20 is 0

Height of the process 8595 with key 83 is 0

Height of the process 8598 with key 31 is 0

Height of the process 8596 with key 70 is 0

Height of the process 8591 with key 11 is 0

Height of the process 8586 with key 22 is 1

Height of the process 8588 with key 15 is 1

Height of the process 8592 with key 73 is 1

Height of the process 8587 with key 69 is 2

Height of the process 8582 with key 7 is 3

Height of the process 8593 with key 43 is 3

Height of the process 8584 with key 17 is 2

Height of the process 8589 with key 29 is 4

Height of the process 8580 with key 4 is 4

Height of the process 8585 with key 48 is 5

Height of the process 8594 with key 35 is 2

Height of the process 8583 with key 64 is 6

Height of the process 8581 with key 28 is 7

Height of the process 8578 with key 23 is 9 [Height of entire tree]

Height of the process 8579 with key 90 is 8

+++ Inorder listing of the keys: 4 7 11 15 17 20 22 23 28 29 31 35 39 42 43 48 64 69 70 73 83 90

— Page 4 of 4 —

