
CS69001 Computing Laboratory – I

Assignment No: A1

Date: 22–July–2019

A quadrilateral (also called a quadrangle and a tetragon) is a four-sided plane polygon. For simplicity, we

concentrate only on simple and convex quadrilaterals. A quadrilateral is specified by the coordinates of its

four corners. We assume that the corners are supplied in the counterclockwise direction starting from any

corner. We number the corners as 0,1,2,3, and the sides (line segments, often directed) as 0,1,2,3 too.

0

1

2
3

0

1

2

3

In this assignment, you write a program to compute the intersection polygon of two given quadrilaterals R1

and R2. We are mostly interested in the area of the intersection polygon. You are required to implement three

different algorithms to compute the (approximate) intersection area. Assume that both the quadrilaterals lie

completely inside the unit square U with corners at (0,0), (1,0), (1,1) and (0,1).

Before proceeding to a description of the algorithms, let us look at the following figure which demonstrates

different possible cases of intersection. If the two quadrilaterals are disjoint (Part (a)), their intersection area

is zero. If one of the quadrilaterals is completely inside the other (Part (b)), the intersection polygon is the

inner quadrilateral. If the sides of the quadrilaterals intersect at one or more points, we have six possible

cases (Parts (c)–(h)) characterized by the number of sides that the intersection polygon has.

(a) No intersection (b) One inside other (c) Three sides (d) Four sides

(h) Eight sides(g) Seven sides(f) Six sides(e) Five sides

We assume that the corners of the input polygons are in general position. In computational geometry, this

means that no degenerate cases occur. For example, the sides of the given quadrilaterals are not parallel to

one another, or to the x axis or the y axis. Moreover, we assume that there are no cases of touch, that is,

— Page 1 of 4 —



if two sides of the two quadrilaterals intersect, they do so somewhere in their interiors (not at one or more

corners). Degenerate cases can often be handled with extra care, but you are not required to do so here.

Throughout this assignment, you are encouraged to use double-precision floating-point arithmetic. That is,

use double variables instead of single-precision float variables.

Part 1: Some Useful Data Types and Functions

Define a user-defined data type (or class) to represent a point in the two-dimensional plane. This is a pair

of double variables. Likewise, define a data type to store a polygon (like a quadrilateral or an intersection

polygon). For the problem at hand, a polygon may have at most eight corners, so an array of eight points

suffices to store a polygon.

Write a function segint(P1,P2,Q1,Q2) to compute the point of intersection of two line segments P1P2

and Q1Q2 (if it exists). Line segments are bounded in both the directions. Therefore, the segments may have

no intersection even if the lines supporting the segments intersect. Generate the equation of the two lines

P1P2 and Q1Q2, and if they are not parallel, compute their point of intersection. Finally, check whether this

point of intersection belongs to both the segments.

Write a function side(P1,P2,P) to compute the position of the point P relative to the directed line P1P2.

Compute the determinant

D =

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x y

∣

∣

∣

∣

∣

∣

.

P is on, to the left, or to the right of P1P2 according as whether D = 0, D > 0, or D < 0, respectively.

Write a function pointpos(R,P) to find the position of a point P relative to a quadrilateral R. We are

interested in finding out whether P lies in the interior of R or not. Under the convention that the corners of

R are arranged in the counterclockwise order, the four sides are given orientation from a corner to the next

corner in the counterclockwise order. But then, P lies inside R if and only if P lies to the left of all of the

directed sides of the quadrilateral R.

Write a function tarea(A,B,C) to compute the area of the triangle with corners at the points A, B, and C.

Write a function parea(P,n) to compute the area of a polygon P with n sides. Triangulate the polygon,

and add the areas of the triangles. A scheme is suggested below.

2

3
4

5

6

0
1

Part 2: The Graphical Method

Recall that our region of interest is restricted to the unit square U with corners (0,0), (1,0), (1,1), and

(0,1). Choose some positive integer N, and decompose U into an N ×N grid of squares each of size 1
N
×

1
N

.

Treat each cell in the grid as a pixel. Count those of the N2 pixels, the centers of which lie inside both

the quadrilaterals. If the count is k, then the area of the intersection of R1 and R2 is approximated as k
N2 .

As N → ∞, this approximation approaches the actual area of intersection. However, this method requires

running time proportional to N2. So you can feasibly take N no larger than 104.

Write a function aoi1(R1,R2,N) to implement this method.

— Page 2 of 4 —



Part 3: The Numerical Method

This method is similar to numeric integration. Again, take a positive integer N, and break U into N vertical

strips, each of height 1 and width 1
N

. Consider the vertical line passing through the center of each strip.

Compute the points of intersection of this vertical line with the sides of the two quadrilaterals. This gives

the amount of overlap (in one dimension, may be zero) at the center of the strip. Multiply this by the

width 1
N

of the strip to get the contribution of that strip to the intersection area. Add up the contributions

of the N strips to obtain an approximate value for the area of intersection of R1 and R2. As N → ∞, this

approximation approaches the correct intersection area. For this method, the running time is proportional to

N, so it is feasible to take N as large as 108.

Write a function aoi2(R1,R2,N) to implement this method.

Part 4: The Geometric Method

The winner enters the scene at the end. This method is guaranteed to give an almost exact computation of

the intersection area. However, since floating-point arithmetic is involved, this will still lead to some small

errors (this is unavoidable in real calculations). But most importantly, this method runs in constant time.

First, compute all the points of intersections of the sides of R1 with the sides of R2. Here, sides are to be

treated as segments (not lines). Let there be l such points of side intersection. We have 0 6 l 6 8. All these

l points will be corners of the desired intersection polygon I. But the intersection polygon may contain one

or more corners from one or both of the input quadrilaterals. You need to insert these quadrilateral corners

in between the l side-intersection points computed above.

Arrange the l side-intersection points in the counterclockwise order (starting from any one of them). In

order to do that, obtain the average (center of mass) of these l points, compute the angles of the l points with

respect to the average (use atan2), and sort the l points with respect to these angles.

You now have three lists of points, all arranged in the counterclockwise order. The l side-intersection points,

the four corners of R1, and the four corners of R2. By the next point in each list, we mean the next point

in the counterclockwise direction in that list. Moreover, let P be a side-intersection point resulting from the

intersection of the side s1 of R1 with the side s2 of R2. The corner of R1 next to P is that endpoint of s1, that

follows P in the counterclockwise orientation. Likewise, the corner of R2 next to P is defined.

Let us first handle the special case l = 0. This happens when either the quadrilaterals are disjoint or one of

these is completely contained in the other. In the first case, all corners of each quadrilateral must lie outside

the other quadrilateral, whereas in the second, all four of the corners of one quadrilateral lie inside the other

(checking for one suffices). For disjoint quadrilaterals, the area of intersection is zero, whereas in the other

case with l = 0, it is the area of the contained quadrilateral.

Now, suppose that l > 0. We build the list I of the corners of the intersection polygon of R1 and R2. Initialize

I to empty. Add any side-intersection point to I (so now I contains only one corner at this time). Repeat

the following until you have come back to the first (side-intersection) point added to I. You always need to

remember the last side-intersection point added to I.

Let P be the last point (corner of the intersection polygon) added to I. This point may be one of the three:

(i) a side-intersection point, (ii) a corner of R1, and (iii) a corner of R2. These cases are handled separately.

In Case (i), let P1,next and P2,next be the corners in R1 and R2 next to the side-intersection point P in the

counterclockwise orientation (described above). There are three possibilities (the last two cannot happen

together). First, if P1,next lies outside R2, and P2,next lies outside R1, append the next side-intersection point

to I (you know the last side-intersection point added to I, don’t you? Record it again for you have done the

same thing once more). Second, if P1 lies inside R2, append P1 to I. Third, if P2 lies inside R1, add P2 to I.

Let us now look at Case (ii), that is, the last point P added to I is a corner of R1. Let P1,next be the corner of

R1 next to P (in the counterclockwise direction). If P1,next lies inside R2, then append P1,next to I. Otherwise,

append the next side-intersection point to I (you remembered the last such point added).

Case (iii) can be handled mutatis mutandis like Case (ii).

— Page 3 of 4 —



Well done. You now have the list I of the corners of the intersection polygon. Call parea. You guessed

correctly that the function implementing this method would be named aoi3(R1,R2) (no N now).

But wait! Don’t submit yet. You still do not have the main() thing.

The main() function

• Read the four corners (x- and y-coordinates) of each input quadrilateral R1 and R2 from the user. It is

the responsibility of the user (who, in your case, is your teachers) to supply valid input. That means

that the four corners supplied for each quadrilateral must define a simple and convex quadrilateral

residing inside the unit square U . Moreover, the corners must appear in the counterclockwise order.

The listing of corners of each quadrilateral may, however, start from any corner.

• For N = 10λ , 1 6 λ 6 3, call and report the findings of aoi1().

• For N = 10λ , 1 6 λ 6 6, call and report the findings of aoi2().

• Call aoi3(), and report what you get. Our sample output shows the side-intersection points, and the

points of I. Why don’t you print those as well?

• It may hurt, but start learning how to comment your code. We are fussier about indentation though.

Samples

These are supplied in a standalone text file linked from the lab website.

Submit a single C/C++ source file. Do not use global/static variables.

— Page 4 of 4 —


