
CS69001 Computing Laboratory – I

Practice Exercises: Set 5

1. Let x be a shared integer variable. Write a program to create the variable and initialize it to zero. Write

another program in which n processes P1,P2,P3, . . . ,Pn add random integers in the range [1,100] to x. Here,

P1 is the process that you launch by running the executable of your code. This process reads n from the user.

Subsequently, for i = 1,2,3, . . . ,n−1 (in that sequence), Process Pi forks Process Pi+1. Before the fork, each

process adds its random contribution to x. After all of the n processes add their contributions, each process

prints the final sum stored in x. Since the processes are not trying to write to x at the same time, their is no

need to guard this access to ensure mutual exclusion. However, each process must print the final sum, and

so must wait until all of the n processes have added their contributions to x. Achieve this synchronization

using the wait() system call.

2. Repeat Exercise 1 in the case that 2d processes are adding personal contributions to x. The processes

should be created in the form of a d-dimensional hypercube (see Assignment C1), where d is supplied by

the user to the initial process. You need to make two changes. First, multiple processes now may try to

add to x simultaneously, so mutual exclusion is to be ensured for accessing x. Second, waiting only for the

terminations of the child processes does not guarantee that every process sees the final sum. Use semaphores

to ensure the correct working of your program under this changed scenario.

3. Write a program to add the elements of an array A of n integers as follows. The initial process reads n

and p from the user, and creates and populates A in the shared memory by random integers in the range

[−100,100]. It then creates p child processes. Each of the child processes computes the partial sum of a

chunk of A of size n/p (assume that n is a multiple of p), and writes the partial sum into shared memory.

When all of the p child processes finish, the initial process adds the p partial sums, and prints the final

result. The initial process must know when all child processes have computed their respective sums. This

synchronization is to be achieved as follows. Each child process, after writing its partial sum to the shared

memory, sets a flag in the shared memory to indicate that it is done. The initial process keeps on checking

the flags until all (p) of these have been set (busy wait). The partial sums and the end-of-work flags should

reside in two shared arrays, each of size p.

4. Repeat Exercise 3 with the change that the synchronization is to be achieved by semaphores. The initial

process, after populating A and creating the child processes, waits on a semaphore w. The child processes

use a shared variable count created and initialized to p by the initial process. After each child process

writes its partial sum to the shared memory, it decrements count. Since count is a shared variable, its

access is to be guarded (mutual exclusion) by another semaphore s. The last child process to finish its task

reduces count to zero. It then wakes up the initial process by signaling the semaphore w.

5. Write two programs listen.c and talk.c that work as follows. Let x be a shared integer variable. Each

talk process keeps on writing random integers to x. After each write, the listen process reads and prints the

value. Run one instance of the listen process, and multiple talk processes from different terminals. No two

instances of the talk process should be able to write to x simultaneously. Moreover, once a value is written to

x, it must first be read by the listen process before another talk process can overwrite this value. Implement

the synchronization of the processes by semaphores. Allow each talk process to write 1000 times to x. After

each write, a talk process sleeps for 1ms, whereas after each read, the listen process sleeps for 2ms.

6. Repeat Exercise 3 using pthreads. The master thread creates p worker threads, each of which computes the

partial sum of n/p elements of A, and writes the partial sum and sets an end-of-work flag in shared memory

locations reserved for that worker thread. The master thread waits busily until all of the p end-of-work flags

are set. It then adds the p partial sums, and prints the final result.

7. Repeat Exercise 6 with the difference that the wait of the master thread will be not a busy wait but instead on

a condition variable. The last worker thread to finish wakes the master thread up. Maintain a shared count

of how many worker threads finish. Its access is to be guarded by a mutex.

8. Repeat Exercise 5 using pthreads.

— Page 1 of 1 —


