
CS69001 Computing Laboratory – I

EVEN PC Lab Test 1 Date: 10–September–2018

Part 1: C Program

Let T be a binary tree. Each node of T stores the following four items: an integer-valued key, two child

pointers left and right, and an integer-valued size intended to store the number of nodes in the subtree

rooted at that node (counting the node itself). The following figure shows three formats of storing T . For

simplicity, assume that the keys stored in the nodes of T are distinct from one another.

349 0 0
163 0 0
421 1 0
127 0 0
503 1 1
233 1 0
251 0 1
487 0 1
389 1 1 389 3 5

487 0 2
233 1 0
127 0 0
251 0 4
503 2 1
421 1 0
349 0 0
163 0 0

9389

487 251

233 503

421 163

349

127

Tree

9

LL PC PI

487 127 233 389 251 349 421 503 163
389 487 233 127 251 503 421 349 163
9

LL This is the level-by-level and left-to-right-in-each-level format introduced in the assignments.

PC In this format, we store the keys in the preorder traversal sequence. Against each key, we additionally

store the sizes of the left and the right subtrees of the node storing the key.

PI This format stores the preorder and the inorder sequences of the keys in the tree. One can uniquely

reconstruct the tree (see below) from these two sequences.

Write a C program to perform the following tasks.

− Construct the binary tree T from a file C0.txt storing the tree in the PI format. Let P and I be the

preorder and inorder sequences of keys in T . Let k be the key stored at the root of T . Finally, let

PL, IL and PR, IR be the preorder and inorder sequences of the left and the right subtrees L and R. We

have P = k : PL : PR and I = IL : k : IR, where colon (:) denotes concatenation. Identify k from the first

element of P. Locate k in I (if the keys of T are distinct, k can be found at a unique location). This

gives the above decomposition of the input sequences. Create a root to store k. Recursively build the

two subtrees from the subsequences. PL, IL and PR, IR. Write a function buildtree to solve this part.

− During the construction of T , keep the size fields uninitialized at all the nodes. After the construction

is done, populate the size fields of all the nodes by a recursive traversal of the tree. Write a function

populatesizes for this part.

− Write a function printPC to print the tree in the PC format.

Sample

The input and output formats are specified in the above figure. The input file C0.txt has three lines. The

first line stores the number n of nodes in the tree T . The second line stores the preorder listing of the n keys

in T . Finally, the third line stores the inorder listing of the n keys in T . Assume that the file stores valid

listings of the keys in a binary tree, that is, your program does not have to check for the validity of the input.

Print the output to screen (not to a file). In the first line, print n. This is followed by n lines, each printing

a triple consisting of a key and the sizes of the left and the right subtrees. The keys should appear in the

preorder sequence.

— Page 1 of 2 —

Part 2: Python Program

A date is specified in the US format as Mmm dd, yyyy. Here, dd is a two-digit date, Mmm is the three-letter

abbreviation of a month with (only) the first letter in upper case, and yyyy is a four-digit year (assume that

1800 6 yyyy 6 2018). Some examples of dates specified in this format are Aug 15, 1947 and Sep 09, 2018.

You are given an input file P0.txt storing a list of dates in the US format, one in each line. The number of

dates does not appear explicitly in the file.

Write a Python program to do the following tasks. Read the dates in the input file P0.txt, and sort the

dates chronologically. Print the dates (to screen) in the chronologically sorted order in the US date format.

Your program does not have to check the validity of the input dates. That is, assume that the input file does

not contain invalid dates like Feb 29, 2018, Shr 22, 1941, or Sep 12, 1752 (what is wrong with the last

date, apart from that the year is < 1800?). Assume also that all the dates are provided in the Mmm dd, yyyy

format, that is, ill-formatted dates like June 07, 1889, 01/21/1992, May-16-1857, or DEC 24, 2010 do not

appear in the input file. The input file may contain duplicate dates. Print all the dates, that is, you must not

remove duplicates.

Do not use any external module (like datetime or calendar for manipulating dates). You may, however,

call the built-in sorting function of Python.

Sample

Input Output

Nov 09, 1836

Apr 26, 1995

Jul 12, 2017

Jul 10, 1845

Apr 01, 1994

Dec 11, 1834

Nov 08, 2015

Sep 09, 2016

Jul 19, 1940

Nov 21, 1881

Oct 30, 1945

Aug 22, 1972

Nov 28, 1908

Jul 08, 1967

Dec 23, 1899

Nov 05, 1858

Mar 26, 1845

Sep 26, 1864

Aug 28, 1962

Jun 29, 1996

Dec 11, 1834

Nov 09, 1836

Mar 26, 1845

Jul 10, 1845

Nov 05, 1858

Sep 26, 1864

Nov 21, 1881

Dec 23, 1899

Nov 28, 1908

Jul 19, 1940

Oct 30, 1945

Aug 28, 1962

Jul 08, 1967

Aug 22, 1972

Apr 01, 1994

Apr 26, 1995

Jun 29, 1996

Nov 08, 2015

Sep 09, 2016

Jul 12, 2017

Submit one C/C++ file and one Python file. Write your name, roll no, and PC no as comments in each file.

— Page 2 of 2 —

CS69001 Computing Laboratory – I

ODD PC Lab Test 1 Date: 10–September–2018

Part 1: C Program

Let T be a binary tree. Each node of T stores the following four items: an integer-valued key, two child

pointers left and right, and an integer-valued size intended to store the number of nodes in the subtree

rooted at that node (counting the node itself). The following figure shows three formats of storing T . For

simplicity, assume that the keys stored in the nodes of T are distinct from one another.

349 0 0
163 0 0
421 1 0
127 0 0
503 1 1
233 1 0
251 0 1
487 0 1
389 1 1 389 3 5

487 0 2
233 1 0
127 0 0
251 0 4
503 2 1
421 1 0
349 0 0
163 0 0

9389

487 251

233 503

421 163

349

127

9

PCLLTree IP

487 127 233 389 251 349 421 503 163
9

127 233 487 349 421 163 503 251 389

LL This is the level-by-level and left-to-right-in-each-level format introduced in the assignments.

PC In this format, we store the keys in the preorder traversal sequence. Against each key, we additionally

store the sizes of the left and the right subtrees of the node storing the key.

IP This format stores the inorder and the postorder sequences of the keys in the tree. One can uniquely

reconstruct the tree (see below) from these two sequences.

Write a C program to perform the following tasks.

− Construct the binary tree T from a file C1.txt storing the tree in the IP format. Let I and P be the

inorder and postorder sequences of keys in T . Let k be the key stored at the root of T . Finally, let

IL,PL and IR,PR be the inorder and postorder sequences of the left and the right subtrees L and R. We

have I = IL : k : IR and P = PL : PR : k, where colon (:) denotes concatenation. Identify k from the last

element of P. Locate k in I (if the keys of T are distinct, k can be found at a unique location). This

gives the above decomposition of the input sequences. Create a root to store k. Recursively build the

two subtrees from the subsequences. IL,PL and IR,PR. Write a function buildtree to solve this part.

− During the construction of T , keep the size fields uninitialized at all the nodes. After the construction

is done, populate the size fields of all the nodes by a recursive traversal of the tree. Write a function

populatesizes for this part.

− Write a function printPC to print the tree in the PC format.

Sample

The input and output formats are specified in the above figure. The input file C1.txt has three lines. The

first line stores the number n of nodes in the tree T . The second line stores the inorder listing of the n keys

in T . Finally, the third line stores the postorder listing of the n keys in T . Assume that the file stores valid

listings of the keys in a binary tree, that is, your program does not have to check for the validity of the input.

Print the output to screen (not to a file). In the first line, print n. This is followed by n lines, each printing

a triple consisting of a key and the sizes of the left and the right subtrees. The keys should appear in the

preorder sequence.

— Page 1 of 2 —

Part 2: Python Program

A date is specified in the EU format as dd-Mmm-yyyy. Here, dd is a two-digit date, Mmm is the three-letter

abbreviation of a month with (only) the first letter in upper case, and yyyy is a four-digit year (assume that

1800 6 yyyy 6 2018). Some examples of dates specified in this format are 15-Aug-1947 and 09-Sep-2018.

You are given an input file P1.txt storing a list of dates in the EU format, one in each line. The number of

dates does not appear explicitly in the file.

Write a Python program to do the following tasks. Read the dates in the input file P1.txt, and sort the

dates chronologically. Print the dates (to screen) in the chronologically sorted order in the EU date format.

Your program does not have to check the validity of the input dates. That is, assume that the input file does

not contain invalid dates like 29-Feb-2018, 22-Shr-1941, or 12-Sep-1752 (what is wrong with the last date,

apart from that the year is < 1800?). Assume also that all the dates are provided in the dd-Mmm-yyyy format,

that is, ill-formatted dates like 07-June-1889, 21/01/1992, 16-05-1857, or 24-DEC-2010 do not appear in

the input file. The input file may contain duplicate dates. Print all the dates, that is, you must not remove

duplicates.

Do not use any external module (like datetime or calendar for manipulating dates). You may, however,

call the built-in sorting function of Python.

Sample

Input Output

04-Mar-1970

12-Apr-1830

27-Jun-2014

03-Jun-1882

03-Jul-1827

30-Mar-2014

07-Mar-1910

31-Oct-1919

22-Mar-1902

15-Mar-1841

30-Jan-2015

26-Dec-1926

24-Aug-1899

10-Jan-1952

17-Feb-1922

18-Aug-1977

16-Mar-1881

28-Sep-1890

02-Apr-1931

01-Sep-1978

03-Jul-1827

12-Apr-1830

15-Mar-1841

16-Mar-1881

03-Jun-1882

28-Sep-1890

24-Aug-1899

22-Mar-1902

07-Mar-1910

31-Oct-1919

17-Feb-1922

26-Dec-1926

02-Apr-1931

10-Jan-1952

04-Mar-1970

18-Aug-1977

01-Sep-1978

30-Mar-2014

27-Jun-2014

30-Jan-2015

Submit one C/C++ file and one Python file. Write your name, roll no, and PC no as comments in each file.

— Page 2 of 2 —

