
CS69001 Computing Laboratory – I

Assignment No: C3

Date: 29–October–2018

Let A,B be N ×N matrices. The N ×N product matrix C = AB is to be computed. For a reason to be clear

soon, N is assumed to be even. We also assume that array indexing is zero-based. Let us use lower-case

letters and subscripts i j for denoting the (i, j)-th elements of the matrices. For example, ai j is the (i, j)-th
element of A for i, j ∈ {0,1,2, . . . ,N − 1}. In the main() function, the initial process creates spaces for

A,B,C in the shared memory. You may fix the dimensions N and M beforehand (no need to take user input).

#define N 1000

#define M N/2

Part 1: Sequential Matrix Multiplication

Use the formula

ci j =
N−1

∑
k=0

aikbk j

for computing the product. Write a function matmul1(C,A,B) to implement this standard algorithm.

Part 2: Parallel Matrix Multiplication by Method 1

Let M = N/2. Break the matrices into M×M blocks.

A =

(

A00 A01

A10 A11

)

, B =

(

B00 B01

B10 B11

)

, C =

(

C00 C01

C10 C11

)

.

For each I,J,K ∈ {0,1}, define the block product

DIJK = AIKBKJ.

For each I,J ∈ {0,1}, we then have

CIJ = DIJ0 +DIJ1.

Write a function matmul2(C,A,B) to compute C = AB using this block decomposition of the matrices.

Let P denote the initial process. This process creates eight child processes P0,P1,P2, . . . ,P7. Each child tag

t ∈ {0,1,2, . . . ,7} can be identified as a three-bit integer IJK. The first task of the child process Pt is to

compute the block product DIJK in a local (non-shared) M×M array.

Each child process then tries to modify the relevant block in the product matrix C. For I,J ∈ {0,1}, let

s = 2I + J. Only the child processes P2s and P2s+1 attempt to modify CIJ . These processes have computed

the local block products DIJ0 and DIJ1, respectively. The process which first accesses the block CIJ copies

its local block product to CIJ . The second process to access CIJ adds its local block product to CIJ . After

this modification (copy/add), each child process terminates.

Evidently, P2s and P2s+1 needs mutual exclusion to modify CIJ . Moreover, each of these processes must

know whether it has to copy or add its block product. Use a shared variable to store the status of the block

CIJ (not written by any process, copied by only one process, contributed by two processes). Since this is

a write-enabled shared variable, its access too needs to be performed in a mutually exclusive fashion. Use

appropriate semaphores to enforce mutual exclusion and synchronization.

The initial process P waits until all the eight child processes terminate. This synchronization can be achieved

by the wait() system call.

— Page 1 of 3 —



Part 3: Parallel Matrix Multiplication by Method 2

Use the same block decomposition of Part 2. The initial process P again forks eight new child processes

Q0,Q1,Q2, . . . ,Q7. Let t = 4I+2J+K, where I,J,K ∈ {0,1}. The task of the child process Qt is to compute

the block product DIJK in the shared memory. Allocate different shared memory segments to the eight block

products, so these products may be computed in parallel without a need of mutual exclusion.

Let again s = 2I + J. The processes P2s and P2s+1 compute the shared block products DIJ0 and DIJ1,

respectively. The process (among these two) to finish first terminates immediately. The process to finish

second, computes the block CIJ = DIJ0 +DIJ1, and then terminates. Since the block products DIJK now

reside in shared memory, any child process can access the block products computed by other child processes.

The synchronization between the two processes P2s and P2s+1 is to be implemented using a semaphore. As in

Part 2, the initial process P wait()’s until all the eight child processes Q0,Q1,Q2, . . . ,Q7 terminate. Write

a function matmul3(C,A,B) to carry out the product in the manner described in this part.

The main() function

• Create shared-memory segments A,B,C1,C2,C3, each capable of storing an N ×N integer matrix.

• Populate A and B with random integers in the range [−9,9].

• Call matmul1(C1,A,B) to compute the product C1 = AB. Report the time taken by this function.

• Call matmul2(C2,A,B) to compute C2 = AB by the method of Part 2. Report the time taken by this

function. Also, verify that C1 and C2 are the same matrix.

• Call matmul2(C3,A,B) to compute C3 = AB by the method of Part 3. Report the time taken by this

function. Also, verify that C1 and C3 are the same matrix.

• The above calls are to be made by the initial process P. Appropriate child processes come to being by

the calls matmul2() and matmul3(). The child processes would also print the times taken by them

(from creation to termination).

• P should delete all shared-memory segments and semaphores when these are no longer used.

Sample output

+++ Sequential matrix multiplication

Time taken = 2.172489619 sec

+++ Parallel matrix multiplication by Method 1

Time taken by Process 0 = 0.668225744 sec

Time taken by Process 1 = 0.941227939 sec

Time taken by Process 6 = 1.127982911 sec

Time taken by Process 7 = 1.161493170 sec

Time taken by Process 4 = 1.173572038 sec

Time taken by Process 5 = 1.153494400 sec

Time taken by Process 2 = 1.184520792 sec

Time taken by Process 3 = 1.218318732 sec

Time taken = 1.219022799 sec

+++ Parallel matrix multiplication by Method 2

Time taken by Process 0 = 0.962716714 sec

Time taken by Process 1 = 1.015974284 sec

Time taken by Process 5 = 1.031559906 sec

Time taken by Process 7 = 1.106795162 sec

Time taken by Process 4 = 1.137290960 sec

Time taken by Process 6 = 1.147446384 sec

Time taken by Process 3 = 1.142069608 sec

Time taken by Process 2 = 1.151665685 sec

Time taken = 1.178885296 sec

Submit a single C/C++ source file.

— Page 2 of 3 —



How to measure time

There are many ways actually. And all depends on what time you are interested in. And in what resolution.

Whatever you want, do #include <time.h> (the usual header file declaring time-related functions).

In a time-shared system, it is natural to ask, for how much time your processes individually run. Here

follows a way that gives you that to a reasonable accuracy. If you are running a single-process program with

no other compute-intensive process(es) running, this time tallies closely with the delay you experience.

clock_t c1, c2;

double CPU_time_taken;

c1 = clock();

/* Insert the code, of which you want the measure the time */

c2 = clock();

CPU_time_taken = (double)(c2 - c1) / (double)CLOCKS_PER_SEC;

printf("CPU time taken = %lf seconds\n", CPU_time_taken);

For this assignment, however, there is a problem with the CPU-usage time. The initial process P does only

managerial activity, and eats up very little CPU time. Irrespective of the delay you see in the running of your

program, the CPU_time_taken by P is reported as quite low. In this situation, you would like to register

the calendar time spent. In Unix, the calendar time is measured by the number of seconds that elapsed from

Jan 01, 1970, 00:00:00 hr UTC (surprisingly, this is a time that never existed!!!). You may use the system

call time(NULL) to obtain these many seconds. Now, here is a technology that lets you capture the calendar

time with an approximate resolution of nano-seconds.

struct timespec ts1, ts2;

double cal_time_taken;

clock_gettime(CLOCK_REALTIME, &ts1);

/* Your timely code here */

clock_gettime(CLOCK_REALTIME, &ts2);

cal_time_taken = 1000000000. * (double)(ts2.tv_sec - ts1.tv_sec);

cal_time_taken += (double)(ts2.tv_nsec - ts1.tv_nsec);

cal_time_taken /= 1000000000.;

printf("calendar time taken = %.9lf seconds\n", cal_time_taken);

— Page 3 of 3 —


