
CS69001 Computing Laboratory – I

Assignment No: B3

Date: 13–August–2018

Let T be a binary search tree (BST) with n nodes. Let h = h(T ) denote the height of T (length of a longest

path from the root to a leaf node). Smaller values of h are desirable for enhancing search, insertion and

deletion efficiency. In the best case, h = ⌈log2 n⌉, whereas in the worst case, h = n− 1. We call T height-

balanced if h = Θ(logn). There are well-known algorithms for balancing or rebalancing the heights of

BSTs. In this assignment, you deal with local adjustments in T so as to decrease its height at a reasonable

cost of O(n). This technique is not guaranteed to lead to a height-balanced tree, but can practically improve

the height of T considerably.

To this end, we define a 2-chain in T as a sequence u,v,w of three nodes satisfying the conditions: (i) each

of u and v has only one child, (ii) v is the only child of u, and (iii) w is the only child of v. If v is the left child

of u, and w is the left child of v, we call u,v,w an LL chain. We can analogously define LR, RL, and RR

chains. The following figure illustrates an LL chain and an LR chain. This assignment deals with removal

of all 2-chains from T . The final tree must be a BST storing the same keys as the input tree T .

Removing LR chainRemoving LL chain

v
w

u w

v u
w

u
v

v
uw

w
v

u

As the above figure indicates, 2-chains are eliminated by using rotations. The case of LL and RR chains is

simpler. The left side of the figure demonstrates that a right rotation at u removes the LL chain starting at u.

Handle the case of RR chains symmetrically.

The right side of the above figure illustrates the case of an LR chain. A right rotation at u converts the chain

u,v,w to an RL chain v,u,w. A double rotation helps us achieve the desired objective. We first make a left

rotation at v. This makes u,w,v line up along left-child links. If the right subtree of w (the shaded tree) is

non-empty, the earlier 2-chain is already removed, but the eventual goal of reducing the height at u is not yet

fully addressed (the unshaded subtree is still at a distance of two from u). A second rotation (right) at u now

takes care of both the objectives: chain removal and height shrinking. The symmetric case of RL chains can

be handled analogously.

Part 1: Define a data type for storing a node of a BST T . Each node is supposed to store only an integer-

valued key and two child pointers. Do not include any other field (like parent pointers) in a node. Implement

the standard BST insertion procedure in a function insert. Notice that you do not store duplicate keys in

a BST. If a key already present in the BST is attempted to be inserted, the result is no change in the tree.

Part 2: Write functions for the preorder and inorder printing of the keys of a BST T . Write another

function height to compute and return the height of T . Write yet another function nodecount to compute

and return the number of nodes in T .

The level of a node u in a BST (or binary tree) T with root r is the length of the unique r,u-path in T . Thus,

the root itself is at level 0, its children are at level 1, the grandchildren of the root are at level 2, and so on.

Write a function avglevel to compute the average of the levels of all the nodes in the tree T . You may

instead write a function sumlevel to return the sum of the levels of the nodes in T . This sum, divided by

the number n of nodes in T (as returned by nodecount), gives the average level.

Part 3: Write a function count2chains to get a statistics of the four types of chains (LL, LR, RL, and

RR) in a BST T . The function should print the counts of chains of individual types, and also the total count

of 2-chains in T .

— Page 1 of 2 —



Part 4: Write the functions lrotate and rrotate to perform left and right rotations at a specified node in

the BST T . These functions perform single rotations. If you consider it handy, you may also right a couple

of functions performing double rotations.

Part 5: Write a function rm2chains to remove all the 2-chains in a BST T . Your function should make

a preorder traversal though the tree, and make single or double rotations whenever a 2-chain is located. In

order to simplify the process, you may create a dummy node D, let it store the key +∞, and set its left- and

right-child pointers point to the root of the original tree and an empty tree, respectively. After rm2chains

(the outermost call) returns, the root of the BST should be changed to the left child of D—this is needed,

because a rotation, if made at the initial root of T , introduces a different node at the root position.

The main() function

• The user first enters the number nins of insertions that (s)he wishes to make in an initially empty

BST T . (S)he then supplies nins integer-valued keys. Call insert to insert the supplied keys to T .

Let n be the number of nodes in T after nins insertions. The user is allowed to supply duplicate keys,

so n may be smaller than nins.

• Print the preorder and inorder listings of the keys in T . Also, print the height and the average

level of T (see Part 2). You may also print the output of nodecount.

• Call the function count2chains of Part 3 to print the 2-chain statistics of the current tree T .

• Call rm2chains to remove all the 2-chains of all types from T .

• Again print the information about the tree: the preorder and inorder listing of the keys, the height and

the average level, and the new 2-chain statistics (should be all zeros).

Sample output

Enter nins: 34

Enter keys: 325 318 359 166 356 175 181 349 328 341 329 316 335 183 206 208 190

213 197 306 299 290 335 286 258 243 255 234 277 306 253 222 228 267

+++ Initial tree

Preorder : 325 318 166 175 181 316 183 206 190 197 208 213 306 299 290 286

258 243 234 222 228 255 253 277 267 359 356 349 328 341 329 335

Inorder : 166 175 181 183 190 197 206 208 213 222 228 234 243 253 255 258

267 277 286 290 299 306 316 318 325 328 329 335 341 349 356 359

Height of tree = 18

Average level = 8.750000

Number of nodes = 32

+++ Counts of 2-chains

LL: 5, LR: 5, RL: 3, RR: 3, Total: 16

+++ Removing 2-chains

+++ New tree

Preorder : 325 175 166 316 183 181 206 190 197 213 208 299 286 258 243 228

222 234 255 253 277 267 290 306 318 356 341 329 328 335 349 359

Inorder : 166 175 181 183 190 197 206 208 213 222 228 234 243 253 255 258

267 277 286 290 299 306 316 318 325 328 329 335 341 349 356 359

Height of tree = 11

Average level = 5.531250

+++ Counts of 2-chains

LL: 0, LR: 0, RL: 0, RR: 0, Total: 0

Submit a single C/C++ source file. Do not use global/static variables. Do not invoke any STL features.

— Page 2 of 2 —


