
CS69001: Computing Lab – I
Autumn 2009

Assignment 6

Synchronization and mutual exclusion using semaphores

Due: October 30, 2009 (Friday)

Part 1 (20)

Suppose that you want to implement a search engine for web pages. In order to simplify matters, restrict to
a list of movies. A file of 1000+ movies is supplied to you. Eachmovie record contains a name, a director,
a year of release, and a short description. Read informationfrom the file, and store the records in a shared
memory segment.

Each movie has a popularity rating not provided in the database file. Generate the rating values randomly
as integers between0 and100. Store the rating information too in shared memory.

Part 2 (30)

A set of processes concurrently search in the movie databasefor key words. Given a keyword (likesurreal),
a search process reads all the movie records, identifies onlythose movies whose descriptions contain the
keyword, and prints these movies (names, directors, and release dates only), sorted in the decreasing order of
the popularity ratings.

In order that the database server does not become over-loaded by many search processes, allow at most
five processes at any instant. Use a counting semaphore to implement this restriction. When a sixth (or seventh
or . . . ) process attempts to make a search, it has to wait until one (or more) running search processes finish
working with the database and signal the semaphore.

Part 3 (50)

Now, suppose that there is also an update process which occasionally changes the popularity ratings of one or
more movies. Since popularity ratings are usually computedfrom viewer feedback, these changes are likely
to occur in any movie database (although not very frequently, perhaps). An update in the database during
an ongoing search is expected to produce inconsistent and/or erroneous results. In view of that, the update
process waits until the running search processes finish working with the shared database.

Assume also that the update process has higher priority thanthe search processes. This means that during
the tenure of the update procedure, no new or waiting search process is granted access to the movie database.
When updating is complete, the search processes proceed as in Part 2.

Implement this idea using semaphores.

Note

All the relevant tasks (initial database creation, search,and update) may be handled by child processes forked
by a single parent process. For example, the parent process may spawn ten search processes which keep on
searching in an infinite loop.

Alternatively, you may use different processes from different terminals to carry out different jobs. In that
case, all the processes must agree upon the shared memory andsemaphore keys. UsingIPC PRIVATE during
the creation of shared memory segments and/or semaphores impairs this agreement possibility. You should
instead use specific key values based upon your roll number (like 09CS6068 will use keys 9680, 9681, 9682,
and so on). Another possibility is to useftok() based upon your home directory.

Submit a single C/C++ file solving all the above parts. The filemust contain your name and roll number.


