
Assignment 5

Process Synchronization

Due: October 20

This assignment has 3 parts.

Part 1 :

Consider a system with one parent process and two child processes A and B. There is a
shared signed integer X initialized to 0. Process A increments X by one 10 times in a for
loop. Process B decrements X by one 10 times in a for loop. After both A and B finish,
the parent process prints out the final value of X.

Declare a shared memory variable to hold X (see the calls shmget(), shmat(), shmdt(),
and shmctl() in Linux). Write the programs for processes A and B. Do not put any
synchronization code in the code for A and B . You should write the code in such a
way so that you can simulate race condition in your program by slowing down A or B
appropriately by using sleep() calls at appropriate points. Note that if there is no race
condition, the value of X finally should be 0. Simulating race conditions means that if
you run the program a few times, sometimes the final value of X printed by your program
should be non-zero.

You do not need to submit any file for this part. Your program will be checked by the
TAs in your terminal during the lab hours.

Part 2 :

Add synchronization code based on semaphores to process A and B above so that there is
no possibility of race conditions. Use the calls semget(), semop(), semctl() in Linux to
create and manage sempahores.

Name the C file <your_roll_no>_sem.c (for example, 06CS1004_sem.c). Submit only
this C file.

Part 3 :

In this program, you'll write a program to solve the m-producer n-consumer problem, m,
n >= 1. You have a shared circular buffer that can hold 20 integers. Each of the producer
processes stores the numbers 1 to 50 in the buffer one by one (in a for loop with 50
iterations) and then exits. Each of the consumer processes reads the numbers from the
buffer and adds them to a shared variable SUM (initialized to 0). Any consumer process
can read any of the numbers in the buffer. The only constrain is that every number
written by some producer should be read exactly once by exactly one of the consumers.

Of course, a producer should not write when the buffer is full and a consumer should not
read when the buffer is empty.

Write a program that first creates the shared circular buffer and the shared variable SUM
using the shm*() calls in Linux. You can create any other shared variable that you think
you may need. The program then reads in the value of m and n from the user, and forks m
producers and n consumers. The producer and consumer codes can be written as
functions that are called by the child processes. After all the producers and consumers
have finished (the consumers exit after all the data produced by all the producers have
been read. How does a consumer know this?), the parent process prints the value of
SUM. Note that the value of SUM should be m*25*51 if your program is correct.

Test your program with at least (a) m=1, n=1, (b) m=1, n=2, (c) m=2, n=1, and (d) m=2,
n=2. Name the C file <your_roll_no>_prod.c (for example, 06CS1004_prod.c). Submit
only this C file.

	Assignment 5
	Process Synchronization
	Due: October 20
	This assignment has 3 parts.
	Part 1 :
	Part 2 :
	Part 3 :

